Monday, June 27, 2011

Galois Cube Revisited

Filed under: General,Geometry — m759 @ 1:00 PM

   The 3×3×3 Galois Cube

    See Unity and Multiplicity.

   This cube, unlike Rubik's, is a
    purely mathematical structure.

    Its properties may be compared
    with those of the order-2  Galois
    cube (of eight subcubes, or
    elements ) and the order-4  Galois
    cube (of 64 elements). The
    order-3  cube (of 27 elements)
    lacks, because it is based on
    an odd  prime, the remarkable
    symmetry properties of its smaller
    and larger cube neighbors.

Wednesday, December 27, 2017

For Day 27 of December 2017

Filed under: General,Geometry — m759 @ 3:57 AM

See the 27-part structure of
the 3x3x3 Galois cube

IMAGE- The 3x3x3 Galois cube
as well as Autism Sunday 2015.

Monday, April 3, 2017

Odd Core

Filed under: General,Geometry — Tags: , — m759 @ 9:00 PM


3x3x3 Galois cube, gray and white

Saturday, September 17, 2016


Filed under: General,Geometry — m759 @ 12:25 AM

3x3x3 Galois cube, gray and white

Wednesday, June 29, 2016

Space Jews

Filed under: General,Geometry — Tags: — m759 @ 9:00 PM

For the Feast of SS. Peter and Paul

In memory of Alvin Toffler and Simon Ramo,
a review of figures from the midnight that began
the date of their deaths, June 27, 2016 —


   The 3×3×3 Galois Cube

See also Rubik in this journal.

Monday, June 27, 2016


Filed under: General,Geometry — Tags: — m759 @ 12:00 AM

From a search in this journal for Euclid + Galois + Interplay


   The 3×3×3 Galois Cube

A tune suggested by the first image above —

Monday, April 4, 2016

The Bauersfeld Structure*

Filed under: General,Geometry — m759 @ 8:31 PM

"If you would be a poet, create works capable of
answering the challenge of apocalyptic times,
even if this meaning sounds apocalyptic."

Lawrence Ferlinghetti

"It's a trap!"

Ferlinghetti's friend Erik Bauersfeld,
     who reportedly died yesterday at 93

* See also, in this journal, Galois Cube and Deathtrap.

Tuesday, November 25, 2014

Euclidean-Galois Interplay

Filed under: General,Geometry — Tags: , — m759 @ 11:00 AM

For previous remarks on this topic, as it relates to
symmetry axes of the cube, see previous posts tagged Interplay.

The above posts discuss, among other things, the Galois
projective plane of order 3, with 13 points and 13 lines.

Oxley's 2004 drawing of the 13-point projective plane

These Galois points and lines may be modeled in Euclidean geometry
by the 13 symmetry axes and the 13 rotation planes
of the Euclidean cube. They may also be modeled in Galois geometry
by subsets of the 3x3x3 Galois cube (vector 3-space over GF(3)).


   The 3×3×3 Galois Cube 

Exercise: Is there any such analogy between the 31 points of the
order-5 Galois projective plane and the 31 symmetry axes of the
Euclidean dodecahedron and icosahedron? Also, how may the
31 projective points  be naturally pictured as lines  within the 
5x5x5 Galois cube (vector 3-space over GF(5))?

Update of Nov. 30, 2014 —

For background to the above exercise, see
pp. 16-17 of A Geometrical Picture Book ,
by Burkard Polster (Springer, 1998), esp.
the citation to a 1983 article by Lemay.

Friday, April 27, 2012

An April 27–

Filed under: General,Geometry — m759 @ 11:09 AM

IMAGE- The 3x3x3 Galois cube
The 3×3×3 Galois Cube

Backstory— The Talented, from April 26 last year,
and Atlas Shrugged, from April 27 last year.

Tuesday, February 14, 2012

The Ninth Configuration

Filed under: General,Geometry — m759 @ 2:01 PM

The showmanship of Nicki Minaj at Sunday's
Grammy Awards suggested the above title, 
that of a novel by the author of The Exorcist .

The Ninth Configuration 

The ninth* in a list of configurations—

"There is a (2d-1)d  configuration
  known as the Cox configuration."

MathWorld article on "Configuration"

For further details on the Cox 326 configuration's Levi graph,
a model of the 64 vertices of the six-dimensional hypercube γ6  ,
see Coxeter, "Self-Dual Configurations and Regular Graphs,"
Bull. Amer. Math. Soc.  Vol. 56, pages 413-455, 1950.
This contains a discussion of Kummer's 166 as it 
relates to  γ6  , another form of the 4×4×4 Galois cube.

See also Solomon's Cube.

* Or tenth, if the fleeting reference to 113 configurations is counted as the seventh—
  and then the ninth  would be a 153 and some related material would be Inscapes.

Saturday, January 14, 2012

Defining Form (continued)

Filed under: General,Geometry — Tags: , — m759 @ 12:00 PM

Detail of Sylvie Donmoyer picture discussed
here on January 10


The "13" tile may refer to the 13 symmetry axes
in the 3x3x3 Galois cube, or the corresponding
13 planes through the center in that cube. (See
this morning's post and Cubist Geometries.)

Sunday, June 26, 2011

Sunday Dinner

Filed under: General,Geometry — Tags: — m759 @ 2:22 PM

From "Sunday Dinner" in this journal—

"'If Jesus were to visit us, it would have been
the Sunday dinner he would have insisted on
being a part of, not the worship service at the church.'"

Judith Shulevitz at The New York Times
    on Sunday, July 18, 2010

The image “http://www.log24.com/log/pix06/060410-HotelAdlon2.jpg” cannot be displayed, because it contains errors.

Some table topics—

Today's midday New York Lottery numbers were 027 and 7002.

The former suggests a Galois cube, the latter a course syllabus—

CSC 7002
Graduate Computer Security (Spring 2011)
University of Colorado at Denver
Department of Computer Science

An item from that syllabus:

Six 22 February 2011   DES History of DES; Encryption process; Decryption; Expander function; S-boxes and their output; Key; the function f  that takes the modified key and part of the text as input; mulitple Rounds of DES; Present-day lack of Security in DES, which led to the new Encryption Standard, namely AES. Warmup for AES: the mathematics of Fields: Galois Fields, particularly the one of order 256 and its relation to the irreducible polynomial x^8 + x^4 + x^3 + x + 1 with coefficients from the field Z_2.

Related material: A novel, PopCo , was required reading for the course.

Discuss a different novel by the same author—

The End of Mr. Y .

Discuss the author herself, Scarlett Thomas.

Background for the discussion—

Derrida in this journal versus Charles Williams in this journal.

Related topics from the above syllabus date—

Metaphor and Gestell and Quadrat.

Some context— Midsummer Eve's Dream.

Saturday, April 30, 2011

Crimson Walpurgisnacht

Filed under: General,Geometry — m759 @ 10:30 PM

Part I — Unity and Multiplicity
              (Continued from The Talented and Galois Cube)

On Husserl's 'Philosophie der Arithmetik'- 'A feeling, an angel, the moon, and Italy'

Part II — "A feeling, an angel, the moon, and Italy"—

Click for details

Dean Martin and Peter Lawford in Crimson ad for 2011 Quincy House Q-Ball

Tuesday, April 26, 2011

Unity and Multiplicity

Filed under: General,Geometry — m759 @ 5:48 PM

Today's earlier post mentions one approach to the concepts of unity and multiplicity. Here is another.

The 3×3×3 Galois Cube

Ed Pegg Jr.'s program at Wolfram demonstrating concepts of a 1985 note by Cullinane


One of a group, GL(3,3), of 11,232
natural transformations of the 3×3×3 Cube

See also the earlier 1985 3×3 version by Cullinane.

Thursday, March 10, 2011

Paradigms Lost

Filed under: General,Geometry — Tags: — m759 @ 5:48 PM

(Continued from February 19)

The cover of the April 1, 1970 second edition of The Structure of Scientific Revolutions , by Thomas S. Kuhn—


This journal on January 19, 2011

IMAGE- A Galois cube: model of the 27-point affine 3-space

If Galois geometry is thought of as a paradigm shift from Euclidean geometry,
both images above— the Kuhn cover and the nine-point affine plane—
may be viewed, taken together, as illustrating the shift. The nine subcubes
of the Euclidean  3×3 cube on the Kuhn cover do not  form an affine plane
in the coordinate system of the Galois  cube in the second image, but they
at least suggest  such a plane. Similarly, transformations of a
non-mathematical object, the 1974 Rubik  cube, are not Galois  transformations,
but they at least suggest  such transformations.

See also today's online Harvard Crimson  illustration of problems of translation
not unrelated to the problems of commensurability  discussed by Kuhn.


Wednesday, January 19, 2011

Intermediate Cubism

Filed under: General,Geometry — Tags: — m759 @ 2:22 PM

The following is a new illustration for Cubist Geometries

IMAGE- A Galois cube: model of the 27-point affine 3-space

(For elementary cubism, see Pilate Goes to Kindergarten and The Eightfold Cube.
 For advanced, see Solomon's Cube and Geometry of the I Ching .)

Cézanne's Greetings.

Saturday, November 6, 2010

A Better Story

Filed under: General,Geometry — m759 @ 6:00 PM

Continued from June 4, 2010


See also Jon Han's fanciful illustration in today's New York Times  and "Galois Cube" in this journal.


Powered by WordPress