(A sequel to Foster's Space and Sawyer's Space)
See posts now tagged Galois's Space.
(A sequel to Foster's Space and Sawyer's Space)
See posts now tagged Galois's Space.
This is a sequel to yesterday's post Cube Space Continued.
Click image to enlarge.
The above 35 projective lines, within a 4×4 array —
The above 15 projective planes, within a 4×4 array (in white) —
* See Galois Tesseract in this journal.
The above sketch indicates, in a vague, handwaving, fashion,
a connection between Galois spaces and harmonic analysis.
For more details of the connection, see (for instance) yesterday
afternoon's post Space Oddity.
Yesterday's post suggests a review of the following —
Andries Brouwer, preprint, 1982:
"The Witt designs, Golay codes and Mathieu groups" Pages 89: Substructures of S(5, 8, 24) An octad is a block of S(5, 8, 24). Theorem 5.1
Let B_{0} be a fixed octad. The 30 octads disjoint from B_{0}
the design of the points and affine hyperplanes in AG(4, 2), Proof…. … (iv) We have AG(4, 2).
(Proof: invoke your favorite characterization of AG(4, 2) An explicit construction of the vector space is also easy….) 
Related material: Posts tagged Priority.
For previous remarks on this topic, as it relates to
symmetry axes of the cube, see previous posts tagged Interplay.
The above posts discuss, among other things, the Galois
projective plane of order 3, with 13 points and 13 lines.
These Galois points and lines may be modeled in Euclidean geometry
by the 13 symmetry axes and the 13 rotation planes
of the Euclidean cube. They may also be modeled in Galois geometry
by subsets of the 3x3x3 Galois cube (vector 3space over GF(3)).
The 3×3×3 Galois Cube
Exercise: Is there any such analogy between the 31 points of the
order5 Galois projective plane and the 31 symmetry axes of the
Euclidean dodecahedron and icosahedron? Also, how may the
31 projective points be naturally pictured as lines within the
5x5x5 Galois cube (vector 3space over GF(5))?
Update of Nov. 30, 2014 —
For background to the above exercise, see
pp. 1617 of A Geometrical Picture Book ,
by Burkard Polster (Springer, 1998), esp.
the citation to a 1983 article by Lemay.
Today's previous post on coordinate systems
suggests a look at the phrase "Galois coordinates."
A search shows that the phrase, though natural,
has apparently not been used before 2011* for solutions
to what Hermann Weyl called "the relativity problem."
A thorough historical essay on Galois coordinatization
in this sense would require more academic resources
than I have available. It would likely describe a number
of applications of Galoisfield coordinates to square
(and perhaps to cubical) arrays that were studied before
1976, the date of my Diamond Theory monograph.
But such a survey might not find any such pre1976
coordinatization of a 4×4 array by the 16 elements
of the vector 4space over the Galois field with two
elements, GF(2).
Such coordinatizations are important because of their
close relationship to the Mathieu group M _{24 }.
See a preprint by Anne Taormina and Katrin Wendland,
"The overarching finite symmetry group of Kummer
surfaces in the Mathieu group M _{24} ," with its remark
denying knowledge of any such coordinatization
prior to a 1989 paper by R. T. Curtis.
Related material:
Some images related to Galois coordinates, excerpted
from a Google search today (click to enlarge)—
* A rather abstract 2011 paper that uses the phrase
"Galois coordinates" may have some implications
for the naive form of the relativity problem
related to square and cubical arrays.
The 16point affine Galois space:
Further properties of this space:
In Configurations and Squares, see the
discusssion of the Kummer 16_{6} configuration.
Some closely related material:
For the first two pages, click here.
Continued from February 27, the day Joseph Frank died…
"Throughout the 1940s, he published essays
and criticism in literary journals, and one,
'Spatial Form in Modern Literature'—
a discussion of experimental treatments
of space and time by Eliot, Joyce, Proust,
Pound and others— published in
The Sewanee Review in 1945, propelled him
to prominence as a theoretician."
— Bruce Weber in this morning's print copy
of The New York Times (p. A15, NY edition)
That essay is reprinted in a 1991 collection
of Frank's work from Rutgers University Press:
See also Galois Space and Occupy Space in this journal.
Frank was best known as a biographer of Dostoevsky.
A very loosely related reference… in a recent Log24 post,
Freeman Dyson's praise of a book on the history of
mathematics and religion in Russia:
"The intellectual drama will attract readers
who are interested in mystical religion
and the foundations of mathematics.
The personal drama will attract readers
who are interested in a human tragedy
with characters who met their fates with
exceptional courage."
Frank is survived by, among others, his wife, a mathematician.
The previous post suggests two sayings:
"There is such a thing as a Galois space."
— Adapted from Madeleine L'Engle
"For every kind of vampire, there is a kind of cross."
Illustrations—
The three parts of the figure in today's earlier post "Defining Form"—
— share the same vectorspace structure:
0  c  d  c + d 
a  a + c  a + d  a + c + d 
b  b + c  b + d  b + c + d 
a + b  a + b + c  a + b + d  a + b + c + d 
(This vectorspace a b c d diagram is from Chapter 11 of
Sphere Packings, Lattices and Groups , by John Horton
Conway and N. J. A. Sloane, first published by Springer
in 1988.)
The fact that any 4×4 array embodies such a structure was implicit in
the diamond theorem (February 1979). Any 4×4 array, regarded as
a model of the finite geometry AG(4, 2), may be called a Galois tesseract.
(So called because of the Galois geometry involved, and because the
16 cells of a 4×4 array with opposite edges identified have the same
adjacency pattern as the 16 vertices of a tesseract (see, for instance,
Coxeter's 1950 "SelfDual Configurations and Regular Graphs," figures
5 and 6).)
A 1982 discussion of a more abstract form of AG(4, 2):
Source:
The above 1982 remarks by Brouwer may or may not have influenced
the drawing of the above 1988 ConwaySloane diagram.
An example of lines in a Galois space * —
The 35 lines in the 3dimensional Galois projective space PG(3,2)—
There are 15 different individual linear diagrams in the figure above.
These are the points of the Galois space PG(3,2). Each 3set of linear diagrams
represents the structure of one of the 35 4×4 arrays and also represents a line
of the projective space.
The symmetry of the linear diagrams accounts for the symmetry of the
840 possible images in the kaleidoscope puzzle.
* For further details on the phrase "Galois space," see
Beniamino Segre's "On Galois Geometries," Proceedings of the
International Congress of Mathematicians, 1958 [Edinburgh].
(Cambridge U. Press, 1960, 488499.)
(Update of Jan. 5, 2013— This post has been added to finitegeometry.org.)
Euclidean square and triangle—
Galois square and triangle—
Background—
This journal on the date of Hilton Kramer's death,
The Galois Tesseract, and The Purloined Diamond.
A post of September 1, The Galois Tesseract, noted that the interplay
of algebraic and geometric properties within the 4×4 array that forms
twothirds of the Curtis Miracle Octad Generator (MOG) may first have
been described by Cullinane (AMS abstract 79TA37, Notices , Feb. 1979).
Here is some supporting material—
The passage from Carmichael above emphasizes the importance of
the 4×4 square within the MOG.
The passage from Conway and Sloane, in a book whose first edition
was published in 1988, makes explicit the structure of the MOG's
4×4 square as the affine 4space over the 2element Galois field.
The passage from Curtis (1974, published in 1976) describes 35 sets
of four "special tetrads" within the 4×4 square of the MOG. These
correspond to the 35 sets of four parallel 4point affine planes within
the square. Curtis, however, in 1976 makes no mention of the affine
structure, characterizing his 140 "special tetrads" rather by the parity
of their intersections with the square's rows and columns.
The affine structure appears in the 1979 abstract mentioned above—
The "35 structures" of the abstract were listed, with an application to
Latinsquare orthogonality, in a note from December 1978—
See also a 1987 article by R. T. Curtis—
Further elementary techniques using the miracle octad generator, by R. T. Curtis. Abstract:
“In this paper we describe various techniques, some of which are already used by devotees of the art, which relate certain maximal subgroups of the Mathieu group M_{24}, as seen in the MOG, to matrix groups over finite fields. We hope to bring out the wealth of algebraic structure* underlying the device and to enable the reader to move freely between these matrices and permutations. Perhaps the MOG was misnamed as simply an ‘octad generator’; in this paper we intend to show that it is in reality a natural diagram of the binary Golay code.”
(Received July 20 1987)
– Proceedings of the Edinburgh Mathematical Society (Series 2) (1989), 32: 345353
* For instance:
Update of Sept. 4— This post is now a page at finitegeometry.org.
Hollywood Reporter Exclusive
Martin Sheen Caught in
SpiderMan's Web
Sally Field is in early talks
to play Aunt May.
Related material:
Birthdays in this journal,
Galois Field of Dreams,
and Class of 64.
Yesterday's excerpt from von Balthasar supplies some Catholic aesthetic background for Galois geometry.
That approach will appeal to few mathematicians, so here is another.
Euclid's Window: The Story of Geometry from Parallel Lines to Hyperspace is a book by Leonard Mlodinow published in 2002.
More recently, Mlodinow is the coauthor, with Stephen Hawking, of The Grand Design (published on September 7, 2010).
A review of Mlodinow's book on geometry—
"This is a shallow book on deep matters, about which the author knows next to nothing."
— Robert P. Langlands, Notices of the American Mathematical Society, May 2002
The Langlands remark is an apt introduction to Mlodinow's more recent work.
It also applies to Martin Gardner's comments on Galois in 2007 and, posthumously, in 2010.
For the latter, see a Google search done this morning—
Here, for future reference, is a copy of the current Google cache of this journal's "paged=4" page.
Note the link at the bottom of the page in the May 5, 2010, post to Peter J. Cameron's web journal. Following the link, we find…
For n=4, there is only one factorisation, which we can write concisely as 1234, 1324, 1423. Its automorphism group is the symmetric group S_{4}, and acts as S_{3} on the set of three partitions, as we saw last time; the group of strong automorphisms is the Klein group.
This example generalises, by taking the factorisation to consist of the parallel classes of lines in an affine space over GF(2). The automorphism group is the affine group, and the group of strong automorphisms is its translation subgroup.
See also, in this journal, Window and Window, continued (July 5 and 6, 2010).
Gardner scoffs at the importance of Galois's last letter —
"Galois had written several articles on group theory, and was
merely annotating and correcting those earlier published papers."
— Last Recreations, page 156
For refutations, see the Bulletin of the American Mathematical Society in March 1899 and February 1909.
It is well known that the seven
Similarly, recent posts* have noted that the thirteen
These three cubes, with 8, 27, and 64 subcubes, thus serve as geometric models in a straightforward way– first as models of finite linear spaces, hence as models for small Galois geometries derived from the linear spaces. (The cubes with 8 and 64 subcubes also serve in a less straightforward, and new, way as finitegeometry models– see The Eightfold Cube, Block Designs, and Solomon's Cube.)
A group of collineations** of the 21point plane is one of two nonisomorphic simple groups of order 20,160. The other is the linear group acting on the linear 4space over the twoelement Galois field GF(2). The 1899 paper establishing the nonisomorphism notes that "the expression Galois Field is perhaps not yet in general use."
Coordinates of the 4×4×4 cube's subcubes can, of course, be regarded as elements of the Galois field GF(64).
The preceding remarks were purely mathematical. The "dreams" of this post's title are not. See…
See also Geometry of the I Ching and a search in this journal for
* February 27 and March 13
** G_{20160} in Mitchell 1910, LF(3,2^{2}) in Edge 1965
— Mitchell, Ulysses Grant, "Geometry and Collineation Groups
of the Finite Projective Plane PG(2,2^{2}),"
Princeton Ph.D. dissertation (1910)
— Edge, W. L., "Some Implications of the Geometry of
the 21Point Plane," Math. Zeitschr. 87, 348362 (1965)
The 4×4 square may also be called the Galois Tesseract .
By analogy, the 4x4x4 cube may be called the Galois Hexeract .
Underlying the I Ching structure is the finite affine space
of six dimensions over the Galois field with two elements.
In this field, "1 + 1 = 0," as noted here Wednesday.
See also other posts now tagged Interstice.
"The role of Desargues's theorem was not understood until
the Desargues configuration was discovered. For example,
the fundamental role of Desargues's theorem in the coordinatization
of synthetic projective geometry can only be understood in the light
of the Desargues configuration.
Thus, even as simple a formal statement as Desargues's theorem
is not quite what it purports to be. The statement of Desargues's theorem
pretends to be definitive, but in reality it is only the tip of an iceberg
of connections with other facts of mathematics."
— From p. 192 of "The Phenomenology of Mathematical Proof,"
by GianCarlo Rota, in Synthese , Vol. 111, No. 2, Proof and Progress
in Mathematics (May, 1997), pp. 183196. Published by: Springer.
Stable URL: https://www.jstor.org/stable/20117627.
Related figures —
Note the 3×3 subsquare containing the triangles ABC, etc.
"That in which space itself is contained" — Wallace Stevens
The title was suggested by Ellmann's roulettewheel analogy
in the previous post, "The Perception of Coincidence."
Ellmann on Joyce and 'the perception of coincidence' —
"Samuel Beckett has remarked that to Joyce reality was a paradigm,
an illustration of a possibly unstatable rule. Yet perhaps the rule
can be surmised. It is not a perception of order or of love; more humble
than either of these, it is the perception of coincidence. According to
this rule, reality, no matter how much we try to manipulate it, can only
assume certain forms; the roulette wheel brings up the same numbers
again and again; everyone and everything shift about in continual
movement, yet movement limited in its possibilities."
— Richard Ellmann, James Joyce , rev. ed.. Oxford, 1982, p. 551
John Calder, an independent British publisher who built a prestigious list
of authors like Samuel Beckett and Heinrich Böll and spiritedly defended
writers like Henry Miller against censorship, died on Aug. 13 in Edinburgh.
He was 91.
— Richard Sandomir in the online New York Times this evening
On Beckett —
Also on August 13th —
From the online New York Times this afternoon:
Disney now holds nine of the top 10
domestic openings of all time —
six of which are part of the Marvel
Cinematic Universe. “The result is
a reflection of 10 years of work:
of developing this universe, creating
stakes as big as they were, characters
that matter and stories and worlds that
people have come to love,” Dave Hollis,
Disney’s president of distribution, said
in a phone interview.
From this journal this morning:
"But she felt there must be more to this
than just the sensation of folding space
over on itself. Surely the Centaurs hadn't
spent ten years telling humanity how to
make a fancy amusementpark ride.
There had to be more—"
— Factoring Humanity , by Robert J. Sawyer,
Tom Doherty Associates, 2004 Orb edition,
page 168
"The sensation of folding space . . . ."
Or unfolding:
Click the above unfolded space for some background.
Remarks related to a recent film and a notsorecent film.
For some historical background, see Dirac and Geometry in this journal.
Also (as Thas mentions) after Saniga and Planat —
The SanigaPlanat paper was submitted on December 21, 2006.
Excerpts from this journal on that date —
"Open the pod bay doors, HAL."
"By an archetype I mean a systematic repertoire
of ideas by means of which a given thinker describes,
by analogical extension , some domain to which
those ideas do not immediately and literally apply."
— Max Black in Models and Metaphors
(Cornell, 1962, p. 241)
"Others … spoke of 'ultimate frames of reference' …."
— Ibid.
A "frame of reference" for the concept four quartets —
A less reputable analogical extension of the same
frame of reference —
Madeleine L'Engle in A Swiftly Tilting Planet :
"… deep in concentration, bent over the model
they were building of a tesseract:
the square squared, and squared again…."
See also the phrase Galois tesseract .
"With respect to the story's content, the frame thus acts
both as an inclusion of the exterior and as an exclusion
of the interior: it is a perturbation of the outside at the
very core of the story's inside, and as such, it is a blurring
of the very difference between inside and outside."
— Shoshana Felman on a Henry James story, p. 123 in
"Turning the Screw of Interpretation,"
Yale French Studies No. 55/56 (1977), pp. 94207.
Published by Yale University Press.
See also the previous post and The Galois Tesseract.
Silas in "Equals" (2015) —
Ever since we were kids it's been drilled into us that …
Our purpose is to explore the universe, you know.
Outer space is where we'll find …
… the answers to why we're here and …
… and where we come from.
Related material —
See also Galois Space in this journal.
The "Black" of the title refers to the previous post.
For the "Well," see Hexagram 48.
Related material —
The Galois Tesseract and, more generally, Binary Coordinate Systems.
Or: The Square
"What we do may be small, but it has
a certain character of permanence."
— G. H. Hardy
* See Expanding the Spielraum in this journal.
From a review of the 2016 film "Arrival" —
"A seemingly offhand reference to Abbott and Costello
is our gateway. In a movie as generally humorless as Arrival,
the jokes mean something. Ironically, it is Donnelly, not Banks,
who initiates the joke, naming the verbally inexpressive
Heptapod aliens after the loquacious Classical Hollywood
comedians. The squidlike aliens communicate via those beautiful,
cryptic images. Those signs, when thoroughly comprehended,
open the perceiver to a nonlinear conception of time; this is
SapirWhorf taken to the ludicrous extreme."
— Jordan Brower in the Los Angeles Review of Books
Further on in the review —
"Banks doesn’t fully understand the alien language, but she
knows it well enough to get by. This realization emerges
most evidently when Banks enters the alien ship and, floating
alongside Costello, converses with it in their picturelanguage.
She asks where Abbott is, and it responds — as presented
in subtitling — that Abbott 'is death process.'
'Death process' — dying — is not idiomatic English, and what
we see, written for us, is not a perfect translation but a
rendering of Banks’s understanding. This, it seems to me, is a
crucial moment marking the hard limit of a human mind,
working within the confines of human language to understand
an ultimately intractable xenolinguistic system."
For what may seem like an intractable xenolinguistic system to
those whose experience of mathematics is limited to portrayals
by Hollywood, see the previous post —
van Lint and Wilson Meet the Galois Tesseract.
The death process of van Lint occurred on Sept. 28, 2004.
Pinterest boards uploaded to the new m759.net/piwigo —
Update of May 2 —
Update of May 3 —
Update of May 8 —
Art Space board created at Pinterest
See also "Romancing the Omega" —
Related mathematics — Guitart in this journal —
See also Weyl + Palermo in this journal —
From a Google image search yesterday —
Sources (left to right, top to bottom) —
Math Guy (July 16, 2014)
The Galois Tesseract (Sept. 1, 2011)
The Full Force of Roman Law (April 21, 2014)
A Great Moonshine (Sept. 25, 2015)
A Point of Identity (August 8, 2016)
Pascal via Curtis (April 6, 2013)
Correspondences (August 6, 2011)
Symmetric Generation (Sept. 21, 2011)
In memory of New Yorker artist Anatol Kovarsky,
who reportedly died at 97 on June 1.
Note the Santa, a figure associated with Macy's at Herald Square.
See also posts tagged Herald Square, as well as the following
figure from this journal on the day preceding Kovarsky's death.
A note related both to Galois space and to
the "Herald Square"tagged posts —
"There is such a thing as a length16 sequence."
— Saying adapted from a youngadult novel.
Earlier posts have dealt with Solomon Marcus and Solomon Golomb,
both of whom died this year — Marcus on Saint Patrick's Day, and
Golomb on Orthodox Easter Sunday. This suggests a review of
Solomon LeWitt, who died on Catholic Easter Sunday, 2007.
A quote from LeWitt indicates the depth of the word "conceptual"
in his approach to "conceptual art."
From Sol LeWitt: A Retrospective , edited by Gary Garrels, Yale University Press, 2000, p. 376:
THE SQUARE AND THE CUBE "The best that can be said for either the square or the cube is that they are relatively uninteresting in themselves. Being basic representations of two and threedimensional form, they lack the expressive force of other more interesting forms and shapes. They are standard and universally recognized, no initiation being required of the viewer; it is immediately evident that a square is a square and a cube a cube. Released from the necessity of being significant in themselves, they can be better used as grammatical devices from which the work may proceed." "Reprinted from Lucy R. Lippard et al ., “Homage to the Square,” Art in America 55, No. 4 (JulyAugust 1967): 54. (LeWitt’s contribution was originally untitled.)" 
See also the Cullinane models of some small Galois spaces —
From a review of a play by the late Anne Meara* —
"Meara, known primarily as an actress/comedian
(half of the team of Stiller & Meara, and mother of
Ben Stiller), is also an accomplished writer for the
stage; her After Play was much acclaimed….
This new, more ambitious piece starts off with a sly
sendup of awards dinners as the late benefactor of
a wealthy foundation–the comically pixilated scientist
Herschel Strange (Jerry Stiller)–is seen on videotape.
This tape sets a light tone that is hilariously
heightened when John Shea, as Arthur Garden,
accepts the award given in Strange's name."
Compare and contrast —
I of course prefer the Galois I Ching .
* See the May 25, 2015, post The Secret Life of the Public Mind.
A search for "Max Black" in this journal yields some images
from a post of August 30, 2006 . . .
"Jackson has identified the seventh symbol." 
The "Jackson" above is played by the young James Spader,
who in an older version currently stars in "The Blacklist."
"… the memorable models of science are 'speculative instruments,' — Max Black in Models and Metaphors , Cornell U. Press, 1962 
It is an odd fact that the close relationship between some
small Galois spaces and small Boolean spaces has gone
unremarked by mathematicians.
A Google search today for "Galois spaces" + "Boolean spaces"
yielded, apart from merely terminological sources, only some
introductory material I have put on the Web myself.
Some more sophisticated searches, however led to a few
documents from the years 1971 – 1981 …
"Harmonic Analysis of Switching Functions" ,
by Robert J. Lechner, Ch. 5 in A. Mukhopadhyay, editor,
Recent Developments in Switching Theory , Academic Press, 1971.
"Galois Switching Functions and Their Applications,"
by B. Benjauthrit and I. S. Reed,
JPL Deep Space Network Progress Report 4227 , 1975
D.K. Pradhan, “A Theory of Galois Switching Functions,”
IEEE Trans. Computers , vol. 27, no. 3, pp. 239249, Mar. 1978
"Switching functions constructed by Galois extension fields,"
by Iwaro Takahashi, Information and Control ,
Volume 48, Issue 2, pp. 95–108, February 1981
An illustration from the Lechner paper above —
"There is such a thing as harmonic analysis of switching functions."
— Saying adapted from a youngadult novel
"The colorful story of this undertaking begins with a bang."
— Martin Gardner on the death of Évariste Galois
"The office of color in the color line
is a very plain and subordinate one.
It simply advertises the objects of
oppression, insult, and persecution.
It is not the maddening liquor, but
the black letters on the sign
telling the world where it may be had."
— Frederick Douglass, "The Color Line,"
The North American Review , Vol. 132,
No. 295, June 1881, page 575
Or gold letters.
From a search for Seagram in this journal —
"The colorful story of this undertaking begins with a bang."
— Martin Gardner on the death of Évariste Galois
Stanford Encyclopedia of Philosophy
on the date Friday, April 5, 2013 —
"First published Tue Sep 24, 1996;
substantive revision Fri Apr 5, 2013"
This journal on the date Friday, April 5, 2013 —
The object most closely resembling a "philosophers' stone"
that I know of is the eightfold cube .
For some related philosophical remarks that may appeal
to a general Internet audience, see (for instance) a website
by I Ching enthusiast Andreas Schöter that displays a labeled
eightfold cube in the form of a lattice diagram —
Related material by Schöter —
A 20page PDF, "Boolean Algebra and the Yi Jing."
(First published in The Oracle: The Journal of Yijing Studies ,
Vol 2, No 7, Summer 1998, pp. 19–34.)
I differ with Schöter's emphasis on Boolean algebra.
The appropriate mathematics for I Ching studies is,
I maintain, not Boolean algebra but rather Galois geometry.
See last Saturday's post Two Views of Finite Space.
Unfortunately, that post is, unlike Schöter's work, not
suitable for a general Internet audience.
"Perhaps an insane conceit …." Perhaps.
Related remarks on algebra and space —
"The Quality Without a Name" (Log24, August 26, 2015).
The title phrase, paraphrased without quotes in
the previous post, is from Christopher Alexander's book
The Timeless Way of Building (Oxford University Press, 1979).
A quote from the publisher:
"Now, at last, there is a coherent theory
which describes in modern terms
an architecture as ancient as
human society itself."
Three paragraphs from the book (pp. xiiixiv):
19. Within this process, every individual act
of building is a process in which space gets
differentiated. It is not a process of addition,
in which preformed parts are combined to
create a whole, but a process of unfolding,
like the evolution of an embryo, in which
the whole precedes the parts, and actualy
gives birth to then, by splitting.
20. The process of unfolding goes step by step,
one pattern at a time. Each step brings just one
pattern to life; and the intensity of the result
depends on the intensity of each one of these
individual steps.
21. From a sequence of these individual patterns,
whole buildings with the character of nature
will form themselves within your thoughts,
as easily as sentences.
Compare to, and contrast with, these illustrations of "Boolean space":
(See also similar illustrations from Berkeley and Purdue.)
Detail of the above image —
Note the "unfolding," as Christopher Alexander would have it.
These "Boolean" spaces of 1, 2, 4, 8, and 16 points
are also Galois spaces. See the diamond theorem —
(A review)
For geeks* —
" Domain, Domain on the Range , "
where Domain = the Galois tesseract and
Range = the fourelement Galois field.
This post was suggested by the previous post,
by a Log24 search for Knight + Move, and by
the phrase "discouraging words" found in that search.
* A term from the 1947 film "Nightmare Alley."
The incidences of points and planes in the
Möbius 8_{4 } configuration (8 points and 8 planes,
with 4 points on each plane and 4 planes on each point),
were described by Coxeter in a 1950 paper.*
A table from Monday's post summarizes Coxeter's
remarks, which described the incidences in
spatial terms, with the points and planes as the vertices
and faceplanes of two mutually inscribed tetrahedra —
Monday's post, "Gallucci's Möbius Configuration,"
may not be completely intelligible unless one notices
that Coxeter has drawn some of the intersections in his
Fig. 24, a schematic representation of the pointplane
incidences, as dotless, and some as hollow dots. The figure,
"Gallucci's version of Möbius's 8_{4}," is shown below.
The hollow dots, representing the 8 points (as opposed
to the 8 planes ) of the configuration, are highlighted in blue.
Here a plane (represented by a dotless intersection) contains
the four points that are represented in the square array as lying
in the same row or same column as the plane.
The above Möbius incidences appear also much earlier in
Coxeter's paper, in figures 6 and 5, where they are shown
as describing the structure of a hypercube.
In figures 6 and 5, the dotless intersections representing
planes have been replaced by solid dots. The hollow dots
have again been highlighted in blue.
Figures 6 and 5 demonstrate the fact that adjacency in the set of
16 vertices of a hypercube is isomorphic to adjacency in the set
of 16 subsquares of a square 4×4 array, provided that opposite
sides of the array are identified, as in Fig. 6. The digits in
Coxeter's labels above may be viewed as naming the positions
of the 1's in (0,1) vectors (x_{4}, x_{3}, x_{2}, x_{1}) over the twoelement
Galois field.^{†} In that context, the 4×4 array may be called, instead
of a Möbius hypercube , a Galois tesseract .
* "SelfDual Configurations and Regular Graphs,"
Bulletin of the American Mathematical Society,
Vol. 56 (1950), pp. 413455
^{†} The subscripts' usual 1234 order is reversed as a reminder
that such a vector may be viewed as labeling a binary number
from 0 through 15, or alternately as labeling a polynomial in
the 16element Galois field GF(2^{4}). See the Log24 post
Vector Addition in a Finite Field (Jan. 5, 2013).
Wednesday, March 13, 2013

"I pondered deeply, then, over the
adventures of the jungle. And after
some work with a colored pencil
I succeeded in making my first drawing.
My Drawing Number One.
It looked something like this:
I showed my masterpiece to the
grownups, and asked them whether
the drawing frightened them.
But they answered: 'Why should
anyone be frightened by a hat?'"
* For the title, see Plato Thanks the Academy (Jan. 3).
Recent posts tagged Sagan Dodecahedron
mention an association between that Platonic
solid and the 5×5 grid. That grid, when extended
by the six points on a "line at infinity," yields
the 31 points of the finite projective plane of
order five.
For details of how the dodecahedron serves as
a model of this projective plane (PG(2,5)), see
Polster's A Geometrical Picture Book , p. 120:
For associations of the grid with magic rather than
with Plato, see a search for 5×5 in this journal.
(Five by Five continued)
As the 3×3 grid underlies the order3 finite projective plane,
whose 13 points may be modeled by
the 13 symmetry axes of the cube,
so the 5×5 grid underlies the order5 finite projective plane,
whose 31 points may be modeled by
the 31 symmetry axes of the dodecahedron.
See posts tagged GaloisPlane Models.
Oslo artist Josefine Lyche has a new Instagram post,
this time on pyramids (the monumental kind).
My response —
Wikipedia's definition of a tetrahedron as a
"trianglebased pyramid" …
… and remarks from a Log24 post of August 14, 2013 :
Norway dance (as interpreted by an American)
I prefer a different, Norwegian, interpretation of "the dance of four."
Related material: 
See also some of Burkard Polster's trianglebased pyramids
and a 1983 trianglebased pyramid in a paper that Polster cites —
(Click image below to enlarge.)
Some other illustrations that are particularly relevant
for Lyche, an enthusiast of magic :
From On Art and Magic (May 5, 2011) —

(Updated at about 7 PM ET on Dec. 3.)
The seven symmetry axes of the regular tetrahedron
are of two types: vertextoface and edgetoedge.
Take these axes as the "points" of a Fano plane.
Each of the tetrahedron's six reflection planes contains
two vertextoface axes and one edgetoedge axis.
Take these six planes as six of the "lines" of a Fano
plane. Then the seventh line is the set of three
edgetoedge axes.
(The Fano tetrahedron is not original with me.
See Polster's 1998 A Geometrical Picture Book , pp. 1617.)
There are three reflection planes parallel to faces
of the cube. Take the seven nonempty subsets of
the set of these three planes as the "points" of a
Fano plane. Define the Fano "lines" as those triples
of these seven subsets in which each member of
the triple is the symmetricdifference sum of the
other two members.
(This is the eightfold cube discussed at finitegeometry.org.)
Update of Nov. 30, 2014 —
It turns out that the following construction appears on
pages 1617 of A Geometrical Picture Book , by
Burkard Polster (Springer, 1998).
"Experienced mathematicians know that often the hardest
part of researching a problem is understanding precisely
what that problem says. They often follow Polya's wise
advice: 'If you can't solve a problem, then there is an
easier problem you can't solve: find it.'"
—John H. Conway, foreword to the 2004 Princeton
Science Library edition of How to Solve It , by G. Polya
For a similar but more difficult problem involving the
31point projective plane, see yesterday's post
"EuclideanGalois Interplay."
The above new [see update above] Fanoplane model was
suggested by some 1998 remarks of the late Stephen Eberhart.
See this morning's followup to "EuclideanGalois Interplay"
quoting Eberhart on the topic of how some of the smallest finite
projective planes relate to the symmetries of the five Platonic solids.
Update of Nov. 27, 2014: The seventh "line" of the tetrahedral
Fano model was redefined for greater symmetry.
Update of Nov. 30, 2014 —
For further information on the geometry in
the remarks by Eberhart below, see
pp. 1617 of A Geometrical Picture Book ,
by Burkard Polster (Springer, 1998). Polster
cites a different article by Lemay.
A search for background to the exercise in the previous post
yields a passage from the late Stephen Eberhart:
The first three primes p = 2, 3, and 5 therefore yield finite projective planes with 7, 13, and 31 points and lines, respectively. But these are just the numbers of symmetry axes of the five regular solids, as described in Plato's Timaeus : The tetrahedron has 4 pairs of face planes and comer points + 3 pairs of opposite edges, totalling 7 axes; the cube has 3 pairs of faces + 6 pairs of edges + 4 pairs of comers, totalling 13 axes (the octahedron simply interchanges the roles of faces and comers); and the pentagon dodecahedron has 6 pairs of faces + 15 pairs of edges + 10 pairs of comers, totalling 31 axes (the icosahedron again interchanging roles of faces and comers). This is such a suggestive result, one would expect to find it dealt with in most texts on related subjects; instead, while "well known to those who well know such things" (as Richard Guy likes to quip), it is scarcely to be found in the formal literature [9]. The reason for the common numbers, it turns out, is that the groups of symmetry motions of the regular solids are subgroups of the groups of collineations of the respective finite planes, a face axis being different from an edge axis of a regular solid but all points of a projective plane being alike, so the latter has more symmetries than the former. [9] I am aware only of a series of inhouse publications by Fernand Lemay of the Laboratoire de Didactique, Faculté des Sciences de I 'Éducation, Univ. Laval, Québec, in particular those collectively titled Genèse de la géométrie IX.
— Stephen Eberhart, Dept. of Mathematics, 
Eberhart died of bone cancer in 2003. A memorial by his
high school class includes an Aug. 7, 2003, transcribed
letter from Eberhart to a classmate that ends…
… I earned MA’s in math (UW, Seattle) and history (UM, Missoula) where a math/history PhD program had been announced but canceled. So 1984 to 2002 I taught math (esp. nonEuclidean geometry) at C.S.U. Northridge. It’s been a rich life. I’m grateful. Steve 
See also another informative BRIDGES paper by Eberhart
on mathematics and the seven traditional liberal arts.
Structured gray matter:
Graphic symmetries of Galois space:
The reason for these graphic symmetries in affine Galois space —
symmetries of the underlying projective Galois space:
The Folding
Cynthia Zarin in The New Yorker , issue dated April 12, 2004—
“Time, for L’Engle, is accordionpleated. She elaborated,
‘When you bring a sheet off the line, you can’t handle it
until it’s folded, and in a sense, I think, the universe can’t
exist until it’s folded — or it’s a story without a book.’”
The geometry of the 4×4 square array is that of the
3dimensional projective Galois space PG(3,2).
This space occurs, notably, in the Miracle Octad Generator (MOG)
of R. T. Curtis (submitted to Math. Proc. Camb. Phil. Soc. on
15 June 1974). Curtis did not, however, describe its geometric
properties. For these, see the Cullinane diamond theorem.
Some history:
Curtis seems to have obtained the 4×4 space by permuting,
then “folding” 1×8 binary sequences into 4×2 binary arrays.
The original 1×8 sequences came from the method of Turyn
(1967) described by van Lint in his book Coding Theory
(Springer Lecture Notes in Mathematics, No. 201 , first edition
published in 1971). Two 4×2 arrays form each 4×4 square array
within the MOG. This construction did not suggest any discussion
of the geometric properties of the square arrays.
[Rewritten for clarity on Sept. 3, 2014.]
The Dream of the Expanded Field continues…
From Klein's 1893 Lectures on Mathematics —
"The varieties introduced by Wirtinger may be called Kummer varieties…."
— E. Spanier, 1956
From this journal on March 10, 2013 —
From a recent paper on Kummer varieties,
arXiv:1208.1229v3 [math.AG] 12 Jun 2013,
"The Universal Kummer Threefold," by
Qingchun Ren, Steven V Sam, Gus Schrader, and Bernd Sturmfels —
Two such considerations —
Update of 10 PM ET March 7, 2014 —
The following slides by one of the "Kummer Threefold" authors give
some background related to the above 64point vector space and
to the Weyl group of type E_{7}, W (E_{7}):
The Cayley reference is to "Algorithm for the characteristics of the
triple ϑfunctions," Journal für die Reine und Angewandte
Mathematik 87 (1879): 165169. <http://eudml.org/doc/148412>.
To read this in the context of Cayley's other work, see pp. 441445
of Volume 10 of his Collected Mathematical Papers .
"Eight is a Gate." — Mnemonic rhyme
Today's previous post, Window, showed a version
of the Chinese character for "field"—
This suggests a related image—
The related image in turn suggests…
Unlike linear perspective, axonometry has no vanishing point,
and hence it does not assume a fixed position by the viewer.
This makes axonometry 'scrollable'. Art historians often speak of
the 'moving' or 'shifting' perspective in Chinese paintings.
Axonometry was introduced to Europe in the 17th century by
Jesuits returning from China.
As was the I Ching. A related structure:
From an arXiv preprint submitted July 18, 2011,
and last revised on March 11, 2013 (version 4):
"By our construction, this vector space is the dual
of our hypercube F_{2}^{4} built on I \ O_{9}. The vector space
structure of the latter, to our knowledge, is first
mentioned by Curtis in [Cur89]. Hence altogether
our proposition 2.3.4 gives a novel geometric
meaning in terms of Kummer geometry to the known
vector space structure on I \ O_{9}."
[Cur89] reference:
R. T. Curtis, "Further elementary techniques using
the miracle octad generator," Proc. Edinburgh
Math. Soc. 32 (1989), 345353 (received on
July 20, 1987).
— Anne Taormina and Katrin Wendland,
"The overarching finite symmetry group of Kummer
surfaces in the Mathieu group M _{24 },"
arXiv.org > hepth > arXiv:1107.3834
"First mentioned by Curtis…."
No. I claim that to the best of my knowledge, the
vector space structure was first mentioned by me,
Steven H. Cullinane, in an AMS abstract submitted
in October 1978, some nine years before the
Curtis article.
Update of the above paragraph on July 6, 2013—
No. The vector space structure was described by
The vector space structure as it occurs in a 4×4 array 
See Notes on Finite Geometry for some background.
See in particular The Galois Tesseract.
For the relationship of the 1978 abstract to Kummer
geometry, see Rosenhain and Göpel Tetrads in PG(3,2).
"I’ve had the privilege recently of being a Harvard University
professor, and there I learned one of the greatest of Harvard
jokes. A group of rabbis are on the road to Golgotha and
Jesus is coming by under the cross. The young rabbi bursts
into tears and says, 'Oh, God, the pity of it!' The old rabbi says,
'What is the pity of it?' The young rabbi says, 'Master, Master,
what a teacher he was.'
'Didn’t publish!'
That cold tenure joke at Harvard contains a deep truth.
Indeed, Jesus and Socrates did not publish."
— George Steiner, 2002 talk at York University
See also Steiner on Galois.
Les Miserables at the Academy Awards
Denote the ddimensional hypercube by γ_{d} .
"… after coloring the sixtyfour vertices of γ_{6}
alternately red and blue, we can say that
the sixteen pairs of opposite red vertices represent
the sixteen nodes of Kummer's surface, while
the sixteen pairs of opposite blue vertices
represent the sixteen tropes."
— From "Kummer's 16_{6 }," section 12 of Coxeter's 1950
"Selfdual Configurations and Regular Graphs"
Just as the 4×4 square represents the 4dimensional
hypercube γ_{4 }over the twoelement Galois field GF(2),
so the 4x4x4 cube represents the 6dimensional
hypercube γ_{6} over GF(2).
For religious interpretations, see
Nanavira Thera (Indian) and
I Ching geometry (Chinese).
See also two professors in The New York Times
discussing images of the sacred in an oped piece
dated Sept. 26 (Yom Kippur).
(An episode of Mathematics and Narrative )
A report on the August 9th opening of Sondheim's Into the Woods—
Amy Adams… explained why she decided to take on the role of the Baker’s Wife.
“It’s the ‘Be careful what you wish’ part,” she said. “Since having a child, I’m really aware that we’re all under a social responsibility to understand the consequences of our actions.” —Amanda Gordon at businessweek.com
Related material—
Amy Adams in Sunshine Cleaning "quickly learns the rules and ropes of her unlikely new market. (For instance, there are products out there specially formulated for cleaning up a 'decomp.')" —David Savage at Cinema Retro
Compare and contrast…
1. The following item from Walpurgisnacht 2012—
2. The six partitions of a tesseract's 16 vertices
into four parallel faces in Diamond Theory in 1937—
Background— August 30, 2006—
In the 2006 post, the above seventh symbol 110000 was
interpreted as the I Ching hexagram with topmost and
nexttotop lines solid, not broken— Hexagram 20, View .
In a different interpretation, 110000 is the binary for the decimal
number 48— representing the I Ching's Hexagram 48, The Well .
“… Max Black, the Cornell philosopher, and
others have pointed out how ‘perhaps every science
must start with metaphor and end with algebra, and
perhaps without the metaphor there would never
have been any algebra’ ….”
– Max Black, Models and Metaphors,
Cornell U. Press, 1962, page 242, as quoted
in Dramas, Fields, and Metaphors,
by Victor Witter Turner, Cornell U. Press,
paperback, 1975, page 25
The algebra is certainly clearer than either I Ching
metaphor, but is in some respects less interesting.
For a post that combines both the above I Ching
metaphors, View and Well , see Dec. 14, 2007.
In memory of scholar Elinor Ostrom,
who died today—
(Continued from May 29, 2002)
May 29, 1832—
Évariste Galois, Lettre de Galois à M. Auguste Chevalier—
Après cela, il se trouvera, j'espère, des gens qui trouveront leur profit à déchiffrer tout ce gâchis.
(Later there will be, I hope, some people who will find it to their advantage to decipher all this mess.)
Martin Gardner on the above letter—
"Galois had written several articles on group theory, and was merely annotating and correcting those earlier published papers."
– The Last Recreations , by Martin Gardner, published by Springer in 2007, page 156.
Commentary from Dec. 2011 on Gardner's word "published" —
"Design is how it works." — Steve Jobs
From a commercial testprep firm in New York City—
From the date of the above uploading—

From a New Year's Day, 2012, weblog post in New Zealand—
From Arthur C. Clarke, an early version of his 2001 monolith—
"So they left a sentinel, one of millions they have scattered
throughout the Universe, watching over all worlds with the
promise of life. It was a beacon that down the ages has been
patiently signaling the fact that no one had discovered it.
Perhaps you understand now why that crystal pyramid was set…."
The numerical (not crystal) pyramid above is related to a sort of
mathematical block design known as a Steiner system.
For its relationship to the graphic block design shown above,
see the webpages Block Designs and The Diamond Theorem
as well as The Galois Tesseract and R. T. Curtis's classic paper
"A New Combinatorial Approach to M_{24}," which contains the following
version of the above numerical pyramid—
For graphic block designs, I prefer the blocks (and the parents)
of Grand Rapids to those of New York City.
For the barbed tail of Clarke's "Angel" story, see the New Zealand post
of New Year's Day mentioned above.
Part I: Timothy Gowers on equivalence relations
Part II: Martin Gardner on normal subgroups
Part III: Evariste Galois on normal subgroups
"In all the history of science there is no completer example
of the triumph of crass stupidity over untamable genius…."
— Eric Temple Bell, Men of Mathematics
See also an interesting definition and Weyl on Galois.
Update of 6:29 PM EDT Oct. 30, 2011—
For further details, see Herstein's phrase
"a tribute to the genius of Galois."
A comment today on yesterday's New York Times philosophy column "The Stone"
notes that "Augustine… incorporated Greek ideas of perfection into Christianity."
Yesterday's post here for the Feast of St. Augustine discussed the 2×2×2 cube.
Today's Augustine comment in the Times reflects (through a glass darkly)
a Log24 post from Augustine's Day, 2006, that discusses the larger 4×4×4 cube.
For related material, those who prefer narrative to philosophy may consult
Charles Williams's 1931 novel Many Dimensions . Those who prefer mathematics
to either may consult an interpretation in which Many = Six.
Click image for some background.
The sliding window in blue below
Click for the web page shown.
is an example of a more general concept.
Such a sliding window,* if onedimensional of length n , can be applied to a sequence of 0's and 1's to yield a sequence of ndimensional vectors. For example— an "msequence" (where the "m" stands for "maximum length") of length 63 can be scanned by a length6 sliding window to yield all possible 6dimensional binary vectors except (0,0,0,0,0,0).
For details, see A Galois Field—
The image is from Bert Jagers at his page on the Galois field GF(64) that he links to as "A Field of Honor."
For a discussion of the msequence shown in circular form above, see Jagers's "PseudoRandom Sequences from GF(64)." Here is a noncircular version of the length63 msequence described by Jagers (with length scale below)—
100000100001100010100111101000111001001011011101100110101011111
123456789012345678901234567890123456789012345678901234567890123
This msequence may be viewed as a condensed version of 63 of the 64 I Ching hexagrams. (See related material in this journal.)
For a more literary approach to the window concept, see The Seventh Symbol (scroll down after clicking).
* Moving windows also appear (in a different way) In image processing, as convolution kernels .
The following is a new illustration for Cubist Geometries—
(For elementary cubism, see Pilate Goes to Kindergarten and The Eightfold Cube.
For advanced, see Solomon's Cube and Geometry of the I Ching .)
"Martin Gardner passed away on May 22, 2010."
Imaginary movie poster from stoneship.org
Context— The Gardner Tribute.
… In the Age of Citation
1. INTRODUCTION TO THE PROBLEM
Social network analysis is focused on the patterning of the social
relationships that link social actors. Typically, network data take the
form of a squareactor by actorbinary adjacency matrix, where
each row and each column in the matrix represents a social actor. A
cell entry is 1 if and only if a pair of actors is linked by some social
relationship of interest (Freeman 1989).
— "Using Galois Lattices to Represent Network Data,"
by Linton C. Freeman and Douglas R. White,
Sociological Methodology, Vol. 23, pp. 127–146 (1993)
From this paper's CiteSeer page—
Citations
766  Social Network Analysis: Methods and Applications – WASSERMAN, FAUST – 1994 
100  The act of creation – Koestler – 1964 
75  Visual Thinking – Arnheim – 1969 
Visual Image of the Problem—
From a Google search today:
Related material—
"It is better to light one candle…"
"… the early favorite for best picture at the Oscars" — Roger Moore
"By groping toward the light we are made to realize
how deep the darkness is around us."
— Arthur Koestler, The Call Girls: A TragiComedy,
Random House, 1973, page 118
A 1973 review of Koestler's book—
"Koestler's 'call girls,' summoned here and there
by this university and that foundation
to perform their expert tricks, are the butts
of some chilling satire."
Examples of Light—
Felix Christian Klein (1849 June 22, 1925) and Évariste Galois (18111832)
Klein on Galois—
"… in France just about 1830 a new star of undreamtof brilliance— or rather a meteor, soon to be extinguished— lighted the sky of pure mathematics: Évariste Galois."
— Felix Klein, Development of Mathematics in the 19th Century, translated by Michael Ackerman. Brookline, Mass., Math Sci Press, 1979. Page 80.
"… um 1830 herum in Frankreich als ein neuer Stern von ungeahntem Glanze am Himmel der reinen Mathematik aufleuchtet, um freilich, einem Meteor gleich, sehr bald zu verlöschen: Évariste Galois."
— Felix Klein, Vorlesungen Über Die Entwicklung Der Mathematick Im 19. Jahrhundert. New York, Chelsea Publishing Co., 1967. (Vol. I, originally published in Berlin in 1926.) Page 88.
Examples of Darkness—
Martin Gardner on Galois—
"Galois was a thoroughly obnoxious nerd,
suffering from what today would be called
a 'personality disorder.' His anger was
paranoid and unremitting."
Gardner was reviewing a recent book about Galois by one Amir Alexander.
Alexander himself has written some reviews relevant to the Koestler book above.
See Alexander on—
The 2005 Mykonos conference on Mathematics and Narrative
A series of workshops at Banff International Research Station for Mathematical Innovation between 2003 and 2006. "The meetings brought together professional mathematicians (and other mathematical scientists) with authors, poets, artists, playwrights, and filmmakers to work together on mathematicallyinspired literary works."
In the above view, four of the tesseract's 16
vertices are overlaid by other vertices.
For views that are more complete and
moveable, see Smith's tesseract page.
FourPart Tesseract Divisions—
The above figure shows how fourpart partitions
of the 16 vertices of a tesseract in an infinite
Euclidean space are related to fourpart partitions
of the 16 points in a finite Galois space
Euclidean spaces versus Galois spaces in a larger context—
Infinite versus Finite The central aim of Western religion — "Each of us has something to offer the Creator...
the bridging of
masculine and feminine,
life and death.
It's redemption.... nothing else matters."
 Martha Cooley in The Archivist (1998)
The central aim of Western philosophy — Dualities of Pythagoras
as reconstructed by Aristotle:
Limited Unlimited
Odd Even
Male Female
Light Dark
Straight Curved
... and so on ....
"Of these dualities, the first is the most important; all the others may be seen as different aspects of this fundamental dichotomy. To establish a rational and consistent relationship between the limited [man, etc.] and the unlimited [the cosmos, etc.] is… the central aim of all Western philosophy." 
Another picture related to philosophy and religion—
Jung's FourDiamond Figure from Aion—
This figure was devised by Jung
to represent the Self. Compare the
remarks of Paul Valéry on the Self—
Flight from Eden: The Origins of Modern Literary Criticism and Theory, by Steven Cassedy, U. of California Press, 1990, pages 156157—
Valéry saw the mind as essentially a relational system whose operation he attempted to describe in the language of group mathematics. "Every act of understanding is based on a group," he says (C, 1:331). "My specialty— reducing everything to the study of a system closed on itself and finite" (C, 19: 645). The transformation model came into play, too. At each moment of mental life the mind is like a group, or relational system, but since mental life is continuous over time, one "group" undergoes a "transformation" and becomes a different group in the next moment. If the mind is constantly being transformed, how do we account for the continuity of the self? Simple; by invoking the notion of the invariant. And so we find passages like this one: "The S[elf] is invariant, origin, locus or field, it's a functional property of consciousness" (C, 15:170 [2:315]). Just as in transformational geometry, something remains fixed in all the projective transformations of the mind's momentary systems, and that something is the Self (le Moi, or just M, as Valéry notates it so that it will look like an algebraic variable). Transformation theory is all over the place. "Mathematical science… reduced to algebra, that is, to the analysis of the transformations of a purely differential being made up of homogeneous elements, is the most faithful document of the properties of grouping, disjunction, and variation in the mind" (O, 1:36). "Psychology is a theory of transformations, we just need to isolate the invariants and the groups" (C, 1:915). "Man is a system that transforms itself" (C, 2:896). O Paul Valéry, Oeuvres (Paris: Pléiade, 195760) C Valéry, Cahiers, 29 vols. (Paris: Centre National de le Recherche Scientifique, 195761) 
Note also the remarks of George David Birkhoff at Rice University
in 1940 (pdf) on Galois's theory of groups and the related
"theory of ambiguity" in Galois's testamentary letter—
… metaphysical reasoning always relies on the Principle of Sufficient Reason, and… the true meaning of this Principle is to be found in the “Theory of Ambiguity” and in the associated mathematical “Theory of Groups.” If I were a Leibnizian mystic, believing in his “preestablished harmony,” and the “best possible world” so satirized by Voltaire in “Candide,” I would say that the metaphysical importance of the Principle of Sufficient Reason and the cognate Theory of Groups arises from the fact that God thinks multidimensionally^{*} whereas men can only think in linear syllogistic series, and the Theory of Groups is the appropriate instrument of thought to remedy our deficiency in this respect. * That is, uses multidimensional symbols beyond our grasp. 
Related material:
A medal designed by Leibniz to show how
binary arithmetic mirrors the creation by God
of something (1) from nothing (0).
Another array of 16 strings of 0's and 1's, this time
regarded as coordinates rather than binary numbers—
Some context by a British mathematician —
Imago by Wallace Stevens Who can pick up the weight of Britain, Who can move the German load Or say to the French here is France again? Imago. Imago. Imago. It is nothing, no great thing, nor man Of ten brilliancies of battered gold And fortunate stone. It moves its parade Of motions in the mind and heart, A gorgeous fortitude. Medium man In February hears the imagination's hymns And sees its images, its motions And multitudes of motions And feels the imagination's mercies, In a season more than sun and south wind, Something returning from a deeper quarter, A glacier running through delirium, Making this heavy rock a place, Which is not of our lives composed . . . Lightly and lightly, O my land, Move lightly through the air again. 
(Continued from April 23, 2009, and February 13, 2010.)
Paul Valéry as quoted in yesterday’s post:
“The S[elf] is invariant, origin, locus or field, it’s a functional property of consciousness” (Cahiers, 15:170 [2: 315])
The geometric example discussed here yesterday as a Self symbol may seem too small to be really impressive. Here is a larger example from the Chinese, rather than European, tradition. It may be regarded as a way of representing the Galois field GF(64). (“Field” is a rather ambiguous term; here it does not, of course, mean what it did in the Valéry quotation.)
From Geometry of the I Ching—
The above 64 hexagrams may also be regarded as
the finite affine space AG(6,2)— a larger version
of the finite affine space AG(4,2) in yesterday’s post.
That smaller space has a group of 322,560 symmetries.
The larger hexagram space has a group of
1,290,157,424,640 affine symmetries.
From a paper on GL(6,2), the symmetry group
of the corresponding projective space PG(5,2),*
which has 1/64 as many symmetries—
For some narrative in the European tradition
related to this geometry, see Solomon’s Cube.
* Update of July 29, 2011: The “PG(5,2)” above is a correction from an earlier error.
"I wonder if there's just been a critical mass
of creepy stories about Harvard
in the last couple of years…
A kind of piling on of
nastiness and creepiness…"
— Margaret Soltan, October 23, 2006
Harvard University Press
on Facebook—
http://ping.fm/YrgOh  
May 26 at 6:28 pm via Ping.f 
The book that the late Gardner was reviewing
was published in April by Harvard University Press.
If Gardner's remark were true,
Galois would fit right in at Harvard. Example—
The Harvard math department's pieeating contest—
Wikipedia—
"On June 2, Évariste Galois was buried in a common grave of the Montparnasse cemetery whose exact location is unknown."
Évariste Galois, Lettre de Galois à M. Auguste Chevalier—
Après cela, il y aura, j'espère, des gens qui trouveront leur profit à déchiffrer tout ce gâchis.
(Later there will be, I hope, some people who will find it to their advantage to decipher all this mess.)
Martin Gardner on the above letter—
"Galois had written several articles on group theory, and was merely annotating and correcting those earlier published papers."
— The Last Recreations, by Martin Gardner, published by Springer in 2007, page 156.
"It is a melancholy pleasure that what may be [Martin] Gardner’s last published piece, a review of Amir Alexander’s Duel at Dawn: Heroes, Martyrs & the Rise of Modern Mathematics, will appear next week in our June issue."
– Roger Kimball of The New Criterion, May 23, 2010.
The Gardner piece is now online. It contains…
Gardner's tribute to Galois—
"Galois was a thoroughly obnoxious nerd,
suffering from what today would be called a 'personality disorder.' His anger was paranoid and unremitting." 
Prima Materia
(Background: Art Humor: Sein Feld (March 11, 2009) and Ides of March Sermon, 2009)
From Cardinal Manning’s review of Kirkman’s Philosophy Without Assumptions—
“And here I must confess… that between something and nothing I can find no intermediate except potentia, which does not mean force but possibility.”
— Contemporary Review, Vol. 28 (JuneNovember, 1876), page 1017
Furthermore….
Cardinal Manning, Contemporary Review, Vol. 28, pages 10261027:
The following will be, I believe, a correct statement of the Scholastic teaching:–
1. By strict process of reason we demonstrate a First Existence, a First Cause, a First Mover; and that this Existence, Cause, and Mover is Intelligence and Power.
2. This Power is eternal, and from all eternity has been in its fullest amplitude; nothing in it is latent, dormant, or in germ: but its whole existence is in actu, that is, in actual perfection, and in complete expansion or actuality. In other words God is Actus Purus, in whose being nothing is potential, in potentia, but in Him all things potentially exist.
3. In the power of God, therefore, exists the original matter (prima materia) of all things; but that prima materia is pura potentia, a nihilo distincta, a mere potentiality or possibility; nevertheless, it is not a nothing, but a possible existence. When it is said that the prima materia of all things exists in the power of God, it does not mean that it is of the existence of God, which would involve Pantheism, but that its actual existence is possible.
4. Of things possible by the power of God, some come into actual existence, and their existence is determined by the impression of a form upon this materia prima. The form is the first act which determines the existence and the species of each, and this act is wrought by the will and power of God. By this union of form with the materia prima, the materia secunda or the materia signata is constituted.
5. This form is called forma substantialis because it determines the being of each existence, and is the root of all its properties and the cause of all its operations.
6. And yet the materia prima has no actual existence before the form is impressed. They come into existence simultaneously;
[p. 1027 begins]
as the voice and articulation, to use St. Augustine’s illustration, are simultaneous in speech.
7. In all existing things there are, therefore, two principles; the one active, which is the form– the other passive, which is the matter; but when united, they have a unity which determines the existence of the species. The form is that by which each is what it is.
8. It is the form that gives to each its unity of cohesion, its law, and its specific nature.*
When, therefore, we are asked whether matter exists or no, we answer, It is as certain that matter exists as that form exists; but all the phenomena which fall under sense prove the existence of the unity, cohesion, species, that is, of the form of each, and this is a proof that what was once in mere possibility is now in actual existence. It is, and that is both form and matter.
When we are further asked what is matter, we answer readily, It is not God, nor the substance of God; nor the presence of God arrayed in phenomena; nor the uncreated will of God veiled in a world of illusions, deluding us with shadows into the belief of substance: much less is it catter [pejorative term in the book under review], and still less is it nothing. It is a reality, the physical kind or nature of which is as unknown in its quiddity or quality as its existence is certainly known to the reason of man.
* “… its specific nature”
(Click to enlarge) —
For a more modern treatment of these topics, see Werner Heisenberg’s Physics and Philosophy. For instance:
“The probability wave of Bohr, Kramers, Slater, however, meant… a tendency for something. It was a quantitative version of the old concept of ‘potentia’ in Aristotelian philosophy. It introduced something standing in the middle between the idea of an event and the actual event, a strange kind of physical reality just in the middle between possibility and reality.”
Compare to Cardinal Manning’s statement above:
“… between something and nothing I can find no intermediate except potentia…”
To the mathematician, the cardinal’s statement suggests the set of real numbers between 1 and 0, inclusive, by which probabilities are measured. Mappings of purely physical events to this set of numbers are perhaps better described by applied mathematicians and physicists than by philosophers, theologians, or storytellers. (Cf. Voltaire’s mockery of possibleworlds philosophy and, more recently, The Onion‘s mockery of the fictional storyteller Fournier’s quantum flux. See also Mathematics and Narrative.)
Regarding events that are not purely physical– those that have meaning for mankind, and perhaps for God– events affecting conception, birth, life, and death– the remarks of applied mathematicians and physicists are often ignorant and obnoxious, and very often do more harm than good. For such meaningful events, the philosophers, theologians, and storytellers are better guides. See, for instance, the works of Jung and those of his school. Meaningful events sometimes (perhaps, to God, always) exhibit striking correspondences. For the study of such correspondences, the compact topological space [0, 1] discussed above is perhaps less helpful than the finite Galois field GF(64)– in its guise as the I Ching. Those who insist on dragging God into the picture may consult St. Augustine’s Day, 2006, and Hitler’s Still Point.
The New York Times
on June 17, 2007:
Design Meets Dance,
and Rules Are Broken
Yesterday's evening entry was
on the fictional sins of a fictional
mathematician and also (via a link
to St. Augustine's Day, 2006), on
the geometry of the I Ching* —
The eternal
combined with
the temporal:
The fictional mathematician's
name, noted here (with the Augustine
I Ching link as a gloss) in yesterday's
evening entry, was Summerfield.
From the above Times article–
"Summerspace," a work by
choreographer Merce Cunningham
and artist Robert Rauschenberg
that offers a competing
vision of summer:
From left, composer John Cage,
choreographer Merce Cunningham,
and artist Robert Rauschenberg
in the 1960's
"When shall we three meet again?"
“My pursuits are a joke
in that the universe is a joke.
One has to reflect
the universe faithfully.”
— John Frederick Michell
Feb. 9, 1933 –
April 24, 2009
— Robert A. Heinlein,
The Number of the Beast
For Marisa Tomei
(born Dec. 4, 1964) —
on the day that
Bob Seger turns 64 —
A Joke:
Points All Her Own
Points All Her Own,
Part I:
(For the backstory, see
the Log24 entries and links
on Marisa Tomei’s birthday
last year.)
Points All Her Own,
Part II:
(For the backstory, see
Galois Geometry:
The Simplest Examples.)
Points All Her Own,
Part III:
(For the backstory, see
Geometry of the I Ching
and the history of
Chinese philosophy.)
In simpler terms:
Susan Sontag in
this week's New Yorker:
"The mind is a whore."
Embedded in the Sontag
article is the following:
Act One
South Pole:
Shi Ho
Act Two
North Pole:
Kun
"If baby I'm the bottom,
you're the top."
— Cole Porter
Happy birthday,
Steven Spielberg.
From The nCategory Cafe today:
David Corfield at 2:33 PM UTC quoting a chapter from a projected second volume of a biography:
"Grothendieck’s spontaneous reaction to whatever appeared to be causing a difficulty… was to adopt and embrace the very phenomenon that was problematic, weaving it in as an integral feature of the structure he was studying, and thus transforming it from a difficulty into a clarifying feature of the situation."
John Baez at 7:14 PM UTC on research:
"I just don’t want to reinvent a wheel, or waste my time inventing a square one."
For the adoption and embracing of such a problematic phenomenon, see The Square Wheel (this journal, Sept. 14, 2004).
For a connection of the square wheel with yesterday's entry for Julie Taymor's birthday, see a note from 2002:
— Song lyric,
Cyndi Lauper
Alethiometer from
"The Golden Compass"
Update:
See also this morning's
later entry, illustrating
the next line of Cyndi
Lauper's classic lyric
"Time After Time" —
"… Confusion is
nothing new."
"An acute study of the links
between word and fact"
— Nina daVinci Nichols
Virginia  /391062427/item.html?  2/22/2008 7:37 PM 
Johnny Cash:
"And behold,
a white horse."
Chess Knight
(in German, Springer)
"Liebe Frau vBayern,
mich würde interessieren wie man
mit diesem Hintergrund
(vonbayern.de/german/anna.html)
zu Springer kommt?"
Background of "Frau vBayern" from thePeerage.com:
AnnaNatascha Prinzessin zu SaynWittgensteinBerleburg
F, #64640, b. 15 March 1978Last Edited=20 Oct 2005
AnnaNatascha Prinzessin zu SaynWittgensteinBerleburg was born on 15 March 1978. She is the daughter of Ludwig Ferdinand Prinz zu SaynWittgensteinBerleburg and Countess Yvonne Wachtmeister af Johannishus. She married Manuel Maria Alexander Leopold Jerg Prinz von Bayern, son of Leopold Prinz von Bayern and Ursula Mohlenkamp, on 6 August 2005 at Nykøping, Södermanland, Sweden.
The date of the above "Liebe Frau vBayern" inquiry, Feb. 1, 2007, suggests the following:
From Log24 on
St. Bridget's Day, 2007:
The quotation
"Science is a Faustian bargain"
and the following figure–
Change
From a short story by
the above Princess:
"'I don't even think she would have wanted to change you. But she for sure did not want to change herself. And her values were simply a part of her.' It was true, too. I would even go so far as to say that they were her basis, if you think about her as a geometrical body. That's what they couldn't understand, because in this age of the full understanding for stretches of values in favor of selfrealization of any kind, it was a completely foreign concept."
To make this excellent metaphor mathematically correct,
change "geometrical body" to "space"… as in
"For Princeton's Class of 2007"—
Review of a 2004 production of a 1972 Tom Stoppard play, "Jumpers"–
Related material:
Knight Moves (Log24, Jan. 16),
Kindergarten Theology (St. Bridget's Day, 2008),
and
The above is from
Feb. 15, 2006.
Commencement Address (doc)
to Computer Science Division,
College of Letters and Science,
University of California, Berkeley,
by Jim Gray,
May 25, 2003:
"I was part of Berkeley's class of 1965. Things have changed a lot since then….
So, what's that got to do with you? Well, there is going to be MORE change…. Indeed, change is accelerating– Vernor Vinge suggests we are approaching singularities when social, scientific and economic change are so rapid that we cannot imagine what will happen next. These futurists predict humanity will become posthuman. Now, THAT! is change– a lot more than I have seen.
If it happens, the singularity will happen in your lifetime– and indeed, you are likely to make it happen."
More from Gray's speech:
"I am an optimist. Science is a Faustian bargain– and I am betting on mankind muddling through. I grew up under the threat of atomic war; we've avoided that so far. Information Technology is a Faustian bargain. I am optimistic that we can have the good parts and protect ourselves from the worst part– but I am counting on your help in that."
(Doctorow wrote about
New York. A city more
closely associated with
God is Jerusalem.)
This morning’s entry reboards the Galois train of thought.
Here are some relevant links:
Galois Connections (a French weblog entry providing an brief overview of Galois theory and an introduction to the use of Galois lattices in “formal concept analysis“)
Ontology (an introduction to formal concept analysis linked to on 3/31/06)
One motive for resuming consideration of Galois lattices today is to honor the late A. Richard Newton, a pioneer in engineering design who died at 55– also on Tuesday, Jan. 2, the date of Kollek’s death. Today’s New York Times obituary for Newton says that “most recently, Professor Newton championed the study of synthetic biology.”
A check of syntheticbiology.org leads to a web page on– again– ontology.
For the relationship between ontology (in the semanticweb sense) and Galois lattices, see (for instance)
“Knowledge Organisation and Information Retrieval Using Galois Lattices” (ps) and its references.
An epiphany within all this that Doctorow might appreciate is the following from Wikipedia, found by following a link to “upper ontology” in the syntheticbiology.org ontology page:
 There is no selfevident way of dividing the world up into concepts.
 There is no neutral ground that can serve as a means of translating between specialized (lower) ontologies.
 Human language itself is already an arbitrary approximation of just one among many possible conceptual maps. To draw any necessary correlation between English words and any number of intellectual concepts we might like to represent in our ontologies is just asking for trouble.
Related material:
The intellectual concepts
mentioned by Richard Powers
at the end of tomorrow’s
New York Times Book Review.
(See the links on these concepts
in yesterday’s “Goldberg Variation.”)
See also Old School Tie.
From 7/07, an art review from The New York Times:
Endgame Art?
It's Borrow, Sample and Multiply
in an Exhibition at Bard College
"The show has an endgame, endtime mood….
I would call all these strategies fear of form…. the dismissal of originality is perhaps the oldest ploy in the postmodern playbook. To call yourself an artist at all is by definition to announce a faith, however unacknowledged, in some form of originality, first for yourself, second, perhaps, for the rest of us.
Fear of form above all means fear of compression– of an artistic focus that condenses experiences, ideas and feelings into something whole, committed and visually comprehensible."
— Roberta Smith
It nevertheless does
"announce a faith."
"First for yourself"
Today's midday
Pennsylvania number:
707
See Log24 on 7/07
and the above review.
"Second, perhaps,
for the rest of us"
Today's evening
Pennsylvania number:
384
This number is an
example of what the
reviewer calls "compression"–
"an artistic focus that condenses
experiences, ideas and feelings
into something
whole, committed
and visually comprehensible."
"Experiences"
See (for instance)
Joan Didion's writings
(1160 pages, 2.35 pounds)
on "the shifting phantasmagoria
which is our actual experience."
"Ideas"
"Feelings"
See A Wrinkle in Time.
"Whole"
The automorphisms
of the tesseract
form a group
of order 384.
"Committed"
See the discussions of
groups of degree 16 in
R. D. Carmichael's classic
Introduction to the Theory
of Groups of Finite Order.
"Visually comprehensible"
See "Diamond Theory in 1937,"
an excerpt from which
is shown below.
The "faith" announced by
the above lottery numbers
on All Hallows' Eve is
perhaps that of the artist
Madeleine L'Engle:
A Multicultural Farewell
to a winner of the
Nobel Prize for Literature,
the Egyptian author of
The Seventh Heaven:
Supernatural Stories —
"Jackson has identified
the seventh symbol."
— Stargate
Other versions of
the seventh symbol —
"… Max Black, the Cornell philosopher, and others have pointed out how 'perhaps every science must start with metaphor and end with algebra, and perhaps without the metaphor there would never have been any algebra' …."
— Max Black, Models and Metaphors, Cornell U. Press, 1962, page 242, as quoted in Dramas, Fields, and Metaphors, by Victor Witter Turner, Cornell U. Press, paperback, 1975, page 25
Augustine of Hippo, who is said to
have died on this date in 430 A.D.
"He is, after all, not merely taking over a Neoplatonic ontology, but he is attempting to combine it with a scriptural tradition of a rather different sort, one wherein the divine attributes most prized in the Greek tradition (e.g. necessity, immutability, and atemporal eternity) must somehow be combined with the personal attributes (e.g. will, justice, and historical purpose) of the God of Abraham, Isaac, and Jacob."
— Stanford Encyclopedia of Philosophy on Augustine
Here is a rather different attempt
to combine the eternal with the temporal:
The Eternal
Symbol of necessity,
For details, see 
The Temporal
Symbol of the
For details, see 
The eternal
combined with the temporal:

Related material:
Sacred Order
In memory of Philip Rieff, who died on July 1, 2006:
Related material:
and
For details, see the
five Log24 entries ending
on the morning of
Midsummer Day, 2006.
Note: Carmichael's reference is to
A. Emch, "Triple and multiple systems, their geometric configurations and groups," Trans. Amer. Math. Soc. 31 (1929), 25–42.
These topics may be illuminated
by a study of the Chinese classics.
If we replace the Chinese word "I"
(change, transformation) with the
word "permutation," the relevance
of Western mathematics (which
some might call "the Logos") to
the I Ching ("Changes Classic")
beomes apparent.
Related material:
Hitler's Still Point,
Jung's Imago,
Solomon's Cube,
Geometry of the I Ching,
and Globe Award.
Yesterday's Valentine
may also have some relevance.
Adapted from
illustration below:
“There is a pleasantly discursive treatment of Pontius Pilate’s unanswered question ‘What is truth?'”
— H. S. M. Coxeter, 1987, introduction to Richard J. Trudeau’s remarks on the “Story Theory” of truth as opposed to the “Diamond Theory” of truth in The NonEuclidean Revolution
“A new epistemology is emerging to replace the Diamond Theory of truth. I will call it the ‘Story Theory’ of truth: There are no diamonds. People make up stories about what they experience. Stories that catch on are called ‘true.’ The Story Theory of truth is itself a story that is catching on. It is being told and retold, with increasing frequency, by thinkers of many stripes*….”
— Richard J. Trudeau in
The NonEuclidean Revolution
“‘Deniers’ of truth… insist that each of us is trapped in his own point of view; we make up stories about the world and, in an exercise of power, try to impose them on others.”
— Jim Holt in The New Yorker.
Exercise of Power:
Show that a white horse–
a figure not unlike the
symbol of the mathematics
publisher Springer–
is traced, within a naturally
arranged rectangular array of
polynomials, by the powers of x
modulo a polynomial
irreducible over a Galois field.
This horse, or chess knight–
“Springer,” in German–
plays a role in “Diamond Theory”
(a phrase used in finite geometry
in 1976, some years before its use
by Trudeau in the above book).
Related material
On this date:
In 1490, The White Knight
(Tirant lo Blanc )–
a major influence on Cervantes–
was published, and in 1910
the Mexican Revolution began.
Illustration:
Zapata by Diego Rivera,
Museum of Modern Art,
New York
“First published in the Catalan language in Valencia in 1490…. Reviewing the first modern Spanish translation in 1969 (Franco had ruthlessly suppressed the Catalan language and literature), Mario Vargas Llosa hailed the epic’s author as ‘the first of that lineage of Godsupplanters– Fielding, Balzac, Dickens, Flaubert, Tolstoy, Joyce, Faulkner– who try to create in their novels an allencompassing reality.'”
Earendil_Silmarils:
Les Anamorphoses:
“Pour construire un dessin en perspective,
le peintre trace sur sa toile des repères:
la ligne d’horizon (1),
le point de fuite principal (2)
où se rencontre les lignes de fuite (3)
et le point de fuite des diagonales (4).”
_______________________________
Serge Mehl,
Perspective &
Géométrie Projective:
“… la géométrie projective était souvent
synonyme de géométrie supérieure.
Elle s’opposait à la géométrie
euclidienne: élémentaire…
La géométrie projective, certes supérieure
car assez ardue, permet d’établir
de façon élégante des résultats de
la géométrie élémentaire.”
Similarly…
Finite projective geometry
(in particular, Galois geometry)
is certainly superior to
the elementary geometry of
quiltpattern symmetry
and allows us to establish
de façon élégante
some results of that
elementary geometry.
Other Related Material…
from algebra rather than
geometry, and from a German
rather than from the French:
“This is the relativity problem:
to fix objectively a class of
equivalent coordinatizations
and to ascertain
the group of transformations S
mediating between them.”
— Hermann Weyl,
The Classical Groups,
Princeton U. Press, 1946
Evariste Galois
Weyl also says that the profound branch
of mathematics known as Galois theory
“Perhaps every science must
start with metaphor
and end with algebra;
and perhaps without metaphor
there would never have been
any algebra.”
For metaphor and
algebra combined, see
A.M.S. abstract 79TA37,
Notices of the
American Mathematical Society,
February 1979, pages A193, 194 —
the original version of the 4×4 case
of the diamond theorem.
“When approaching unfamiliar territory, we often, as observed earlier, try to describe or frame the novel situation using metaphors based on relations perceived in a familiar domain, and by using our powers of association, and our ability to exploit the structural similarity, we go on to conjecture new features for consideration, often not noticed at the outset. The metaphor works, according to Max Black, by transferring the associated ideas and implications of the secondary to the primary system, and by selecting, emphasising and suppressing features of the primary in such a way that new slants on it are illuminated.”
— Paul Thompson, University College, Oxford,
The Nature and Role of Intuition
in Mathematical Epistemology
That intuition, metaphor (i.e., analogy), and association may lead us astray is well known. The examples of French perspective above show what might happen if someone ignorant of finite geometry were to associate the phrase “4×4 square” with the phrase “projective geometry.” The results are ridiculously inappropriate, but at least the second example does, literally, illuminate “new slants”– i.e., diagonals– within the perspective drawing of the 4×4 square.
Similarly, analogy led the ancient Greeks to believe that the diagonal of a square is commensurate with the side… until someone gave them a new slant on the subject.
Old School Tie
"We are introduced to John Nash, fuddling flatfooted about the Princeton courtyard, uninterested in his classmates' yammering about their various accolades. One chap has a rather unfortunate sense of style, but rather than tritely insult him, Nash holds a patterned glass to the sun, [director Ron] Howard shows us refracted patterns of light that take shape in a punch bowl, which Nash then displaces onto the neckwear, replying, 'There must be a formula for how ugly your tie is.' "
— Draft of
Computing with Modal Logics
(pdf), by Carlos Areces
and Maarten de Rijke
… diamonds and boxes are upper and lower adjoints of Galois connections…."
Evariste Galois
"Perhaps every science must
start with metaphor
and end with algebra;
and perhaps without metaphor
there would never have been
any algebra."
— attributed, in varying forms
(1, 2, 3), to Max Black,
Models and Metaphors, 1962
For metaphor and
algebra combined, see
"Symmetry invariance
in a diamond ring,"
A.M.S. abstract 79TA37,
Notices of the Amer. Math. Soc.,
February 1979, pages A193, 194 —
the original version of the 4×4 case
of the diamond theorem.
The Square Wheel
Harmonic analysis may be based either on the circular (i.e., trigonometric) functions or on the square (i. e., Walsh) functions. George Mackey's masterly historical survey showed that the discovery of Fourier analysis, based on the circle, was of comparable importance (within mathematics) to the discovery (within general human history) of the wheel. Harmonic analysis based on square
For some observations of Stephen Wolfram on squarewheel analysis, see pp. 573 ff. in Wolfram's magnum opus, A New Kind of Science (Wolfram Media, May 14, 2002). Wolfram's illustration of this topic is closely related, as it happens, to a note on the symmetry of finitegeometry hyperplanes that I wrote in 1986. A web page pointing out this same symmetry in Walsh functions was archived on Oct. 30, 2001.
That web page is significant (as later versions point out) partly because it shows that just as the phrase "the circular functions" is applied to the trigonometric functions, the phrase "the square functions" might well be applied to Walsh
"While the reader may draw many a moral from our tale, I hope that the story is of interest for its own sake. Moreover, I hope that it may inspire others, participants or observers, to preserve the true and complete record of our mathematical times."
— From ErrorCorrecting Codes
Through Sphere Packings
To Simple Groups,
by Thomas M. Thompson,
Mathematical Association of America, 1983
720 in the Book
Searching for an epiphany on this January 6 (the Feast of the Epiphany), I started with Harvard Magazine, the current issue of JanuaryFebruary 2004.
An article titled On Mathematical Imagination concludes by looking forward to
“a New Instauration that will bring mathematics, at last, into its rightful place in our lives: a source of elation….”
Seeking the source of the phrase “new instauration,” I found it was due to Francis Bacon, who “conceived his New Instauration as the fulfilment of a Biblical prophecy and a rediscovery of ‘the seal of God on things,’ ” according to a web page by Nieves Mathews.
Hmm.
The Mathews essay leads to Peter Pesic, who, it turns out, has written a book that brings us back to the subject of mathematics:
Abel’s Proof: An Essay
on the Sources and Meaning
of Mathematical Unsolvability
by Peter Pesic,
MIT Press, 2003
From a review:
“… the book is about the idea that polynomial equations in general cannot be solved exactly in radicals….
Pesic concludes his account after Abel and Galois… and notes briefly (p. 146) that following Abel, Jacobi, Hermite, Kronecker, and Brioschi, in 1870 Jordan proved that elliptic modular functions suffice to solve all polynomial equations. The reader is left with little clarity on this sequel to the story….”
— Roger B. Eggleton, corrected version of a review in Gazette Aust. Math. Soc., Vol. 30, No. 4, pp. 242244
Here, it seems, is my epiphany:
“Elliptic modular functions suffice to solve all polynomial equations.”
Incidental Remarks
on Synchronicity,
Part I
Those who seek a star
on this Feast of the Epiphany
may click here.
Most mathematicians are (or should be) familiar with the work of Abel and Galois on the insolvability by radicals of quintic and higherdegree equations.
Just how such equations can be solved is a less familiar story. I knew that elliptic functions were involved in the general solution of a quintic (fifth degree) equation, but I was not aware that similar functions suffice to solve all polynomial equations.
The topic is of interest to me because, as my recent web page The Proof and the Lie indicates, I was deeply irritated by the way recent attempts to popularize mathematics have sown confusion about modular functions, and I therefore became interested in learning more about such functions. Modular functions are also distantly related, via the topic of “moonshine” and via the “Happy Family” of the Monster group and the Miracle Octad Generator of R. T. Curtis, to my own work on symmetries of 4×4 matrices.
Incidental Remarks
on Synchronicity,
Part II
There is no Log24 entry for
December 30, 2003,
the day John Gregory Dunne died,
but see this web page for that date.
Here is what I was able to find on the Web about Pesic’s claim:
From Wolfram Research:
From Solving the Quintic —
“Some of the ideas described here can be generalized to equations of higher degree. The basic ideas for solving the sextic using Klein’s approach to the quintic were worked out around 1900. For algebraic equations beyond the sextic, the roots can be expressed in terms of hypergeometric functions in several variables or in terms of Siegel modular functions.”
From Siegel Theta Function —
“Umemura has expressed the roots of an arbitrary polynomial in terms of Siegel theta functions. (Mumford, D. Part C in Tata Lectures on Theta. II. Jacobian Theta Functions and Differential Equations. Boston, MA: Birkhäuser, 1984.)”
From Polynomial —
“… the general quintic equation may be given in terms of the Jacobi theta functions, or hypergeometric functions in one variable. Hermite and Kronecker proved that higher order polynomials are not soluble in the same manner. Klein showed that the work of Hermite was implicit in the group properties of the icosahedron. Klein’s method of solving the quintic in terms of hypergeometric functions in one variable can be extended to the sextic, but for higher order polynomials, either hypergeometric functions in several variables or ‘Siegel functions’ must be used (Belardinelli 1960, King 1996, Chow 1999). In the 1880s, Poincaré created functions which give the solution to the nth order polynomial equation in finite form. These functions turned out to be ‘natural’ generalizations of the elliptic functions.”
Belardinelli, G. “Fonctions hypergéométriques de plusieurs variables er résolution analytique des équations algébrique générales.” Mémoral des Sci. Math. 145, 1960.
King, R. B. Beyond the Quartic Equation. Boston, MA: Birkhäuser, 1996.
Chow, T. Y. “What is a ClosedForm Number.” Amer. Math. Monthly 106, 440448, 1999.
From Angel Zhivkov,
Preprint series,
Institut für Mathematik,
HumboldtUniversität zu Berlin:
“… discoveries of Abel and Galois had been followed by the also remarkable theorems of Hermite and Kronecker: in 1858 they independently proved that we can solve the algebraic equations of degree five by using an elliptic modular function…. Kronecker thought that the resolution of the equation of degree five would be a special case of a more general theorem which might exist. This hypothesis was realized in [a] few cases by F. Klein… Jordan… showed that any algebraic equation is solvable by modular functions. In 1984 Umemura realized the Kronecker idea in his appendix to Mumford’s book… deducing from a formula of Thomae… a root of [an] arbitrary algebraic equation by Siegel modular forms.”
— “Resolution of Degree Lessthanorequalto Six Algebraic Equations by Genus Two Theta Constants“
Incidental Remarks
on Synchronicity,
Part III
From Music for Dunne’s Wake:
“Heaven was kind of a hat on the universe,
a lid that kept everything underneath it
where it belonged.”
— Carrie Fisher,
Postcards from the Edge
“720 in 
“The group Sp_{4}(F_{2}) has order 720,”
as does S_{6}. — Angel Zhivkov, op. cit.
Those seeking
“a rediscovery of
‘the seal of God on things,’ “
as quoted by Mathews above,
should see
The Unity of Mathematics
and the related note
Sacerdotal Jargon.
For more remarks on synchronicity
that may or may not be relevant
to Harvard Magazine and to
the annual Joint Mathematics Meetings
that start tomorrow in Phoenix, see
For the relevance of the time
of this entry, 10:10, see

Related recreational reading:
A Logocentric Archetype
Today we examine the relativist, nominalist, leftist, nihilist, despairing, depressing, absurd, and abominable work of Samuel Beckett, darling of the postmodernists.
One lens through which to view Beckett is an essay by Jennifer Martin, "Beckettian Drama as Protest: A Postmodern Examination of the 'Delogocentering' of Language." Martin begins her essay with two quotations: one from the contemptible French twerp Jacques Derrida, and one from Beckett's masterpiece of stupidity, Molloy. For a logocentric deconstruction of Derrida, see my note, "The Shining of May 29," which demonstrates how Derrida attempts to convert a rather important mathematical result to his brand of nauseating and pretentious nonsense, and of course gets it wrong. For a logocentric deconstruction of Molloy, consider the following passage:
"I took advantage of being at the seaside to lay in a store of suckingstones. They were pebbles but I call them stones…. I distributed them equally among my four pockets, and sucked them turn and turn about. This raised a problem which I first solved in the following way. I had say sixteen stones, four in each of my four pockets these being the two pockets of my trousers and the two pockets of my greatcoat. Taking a stone from the right pocket of my greatcoat, and putting it in my mouth, I replaced it in the right pocket of my greatcoat by a stone from the right pocket of my trousers, which I replaced by a stone from the left pocket of my trousers, which I replaced by a stone from the left pocket of my greatcoat, which I replaced by the stone which was in my mouth, as soon as I had finished sucking it. Thus there were still four stones in each of my four pockets, but not quite the same stones….But this solution did not satisfy me fully. For it did not escape me that, by an extraordinary hazard, the four stones circulating thus might always be the same four."
Beckett is describing, in great detail, how a damned moron might approach the extraordinarily beautiful mathematical discipline known as group theory, founded by the French anticleric and leftist Evariste Galois. Disciples of Derrida may play at mimicking the politics of Galois, but will never come close to imitating his genius. For a worthwhile discussion of permutation groups acting on a set of 16 elements, see R. D. Carmichael's masterly work, Introduction to the Theory of Groups of Finite Order, Ginn, Boston, 1937, reprinted by Dover, New York, 1956.
There are at least two ways of approaching permutations on 16 elements in what Pascal calls "l'esprit géométrique." My website Diamond Theory discusses the action of the affine group in a fourdimensional finite geometry of 16 points. For a fourdimensional euclidean hypercube, or tesseract, with 16 vertices, see the highly logocentric movable illustration by Harry J. Smith. The concept of a tesseract was made famous, though seen through a glass darkly, by the Christian writer Madeleine L'Engle in her novel for children and young adults, A Wrinkle in Tme.
This tesseract may serve as an archetype for what Pascal, Simone Weil (see my earlier notes), Harry J. Smith, and Madeleine L'Engle might, borrowing their enemies' language, call their "logocentric" philosophy.
For a more literary antidote to postmodernist nihilism, see Archetypal Theory and Criticism, by Glen R. Gill.
For a discussion of the full range of meaning of the word "logos," which has rational as well as religious connotations, click here.
Powered by WordPress