Log24

Saturday, May 31, 2014

Quaternion Group Models:

Filed under: General,Geometry — Tags: — m759 @ 10:00 AM

The ninefold square, the eightfold cube, and monkeys.

IMAGE- Actions of the unit quaternions in finite geometry, on a ninefold square and on an eightfold cube

For posts on the models above, see quaternion
in this journal. For the monkeys, see

"Nothing Is More Fun than a Hypercube of Monkeys,"
Evelyn Lamb's Scientific American  weblog, May 19, 2014:

The Scientific American  item is about the preprint
"The Quaternion Group as a Symmetry Group,"
by Vi Hart and Henry Segerman (April 26, 2014):

See also  Finite Geometry and Physical Space.

Friday, December 30, 2011

Quaternions on a Cube

Filed under: General,Geometry — Tags: , , — m759 @ 5:48 AM

The following picture provides a new visual approach to
the order-8 quaternion  group's automorphisms.

IMAGE- Quaternion group acting on an eightfold cube

Click the above image for some context.

Here the cube is called "eightfold" because the eight vertices,
like the eight subcubes of a 2×2×2 cube,* are thought of as
independently movable. See The Eightfold Cube.

See also…

Related material: Robin Chapman and Karen E. Smith
on the quaternion group's automorphisms.

* See Margaret Wertheim's Christmas Eve remarks on mathematics
and the following eightfold cube from an institute she co-founded—

Froebel's third gift, the eightfold cube
© 2005 The Institute for Figuring

Photo by Norman Brosterman
fom the Inventing Kindergarten
exhibit at The Institute for Figuring
(co-founded by Margaret Wertheim)

Sunday, May 6, 2012

Triality continued

Filed under: General,Geometry — m759 @ 3:33 PM

This post continues the April 9 post
commemorating Élie Cartan's birthday.

That post mentioned triality .
Here is John Baez reviewing
On Quaternions and Octonions:
Their Geometry, Arithmetic, and Symmetry

by John H. Conway and Derek A. Smith
(A.K. Peters, Ltd., 2003)—

IMAGE- John Baez on quaternions and triality

"In this context, triality manifests itself
as the symmetry that cyclically permutes
the Hurwitz integers  i , j ,  and k ."

Related material— Quaternion Acts in this journal
as well as Finite Geometry and Physical Space.

Sunday, July 1, 2018

Deutsche Ordnung

Filed under: General,Geometry — Tags: — m759 @ 8:22 PM

The title is from a phrase spoken, notably, by Yul Brynner
to Christopher Plummer in the 1966 film "Triple Cross."

Related structures —

Greg Egan's animated image of the Klein quartic —

For a tetrahedral key to the arrangement of the 56 triangles within the above
structure, see a book chapter by Michael Huber of Tübingen

For further details, see the June 29 post Triangles in the Eightfold Cube.

See also, from an April 2013 philosophical conference:

Abstract for a talk at the City University of New York:

The Experience of Meaning 
Jan Zwicky, University of Victoria 
09:00-09:40 Friday, April 5, 2013

Once the question of truth is settled, and often prior to it, what we value in a mathematical proof or conjecture is what we value in a work of lyric art: potency of meaning. An absence of clutter is a feature of such artifacts: they possess a resonant clarity that allows their meaning to break on our inner eye like light. But this absence of clutter is not tantamount to 'being simple': consider Eliot's Four Quartets  or Mozart's late symphonies. Some truths are complex, and they are simplified  at the cost of distortion, at the cost of ceasing to be  truths. Nonetheless, it's often possible to express a complex truth in a way that precipitates a powerful experience of meaning. It is that experience we seek — not simplicity per se , but the flash of insight, the sense we've seen into the heart of things. I'll first try to say something about what is involved in such recognitions; and then something about why an absence of clutter matters to them.

For the talk itself, see a YouTube video.

The conference talks also appear in a book.

The book begins with an epigraph by Hilbert

Wednesday, April 12, 2017

Contracting the Spielraum

Filed under: General,Geometry — Tags: , , , — m759 @ 10:00 AM

The contraction of the title is from group actions on
the ninefold square  (with the center subsquare fixed)
to group actions on the eightfold cube.

From a post of June 4, 2014

At math.stackexchange.com on March 1-12, 2013:

Is there a geometric realization of the Quaternion group?” —

The above illustration, though neatly drawn, appeared under the
cloak of anonymity.  No source was given for the illustrated group actions.
Possibly they stem from my Log24 posts or notes such as the Jan. 4, 2012,
note on quaternion actions at finitegeometry.org/sc (hence ultimately
from my note “GL(2,3) actions on a cube” of April 5, 1985).

Thursday, December 17, 2015

Hint of Reality

Filed under: General,Geometry — Tags: , , — m759 @ 12:45 PM

From an article* in Proceedings of Bridges 2014

As artists, we are particularly interested in the symmetries of real world physical objects.

Three natural questions arise:

1. Which groups can be represented as the group of symmetries of some real-world physical object?

2. Which groups have actually  been represented as the group of symmetries of some real-world physical object?

3. Are there any glaring gaps – small, beautiful groups that should have a physical representation in a symmetric object but up until now have not?

The article was cited by Evelyn Lamb in her Scientific American  
weblog on May 19, 2014.

The above three questions from the article are relevant to a more
recent (Oct. 24, 2015) remark by Lamb:

" finite projective planes [in particular, the 7-point Fano plane,
about which Lamb is writing] 
seem like a triumph of purely 
axiomatic thinking over any hint of reality…."

For related hints of reality, see Eightfold Cube  in this journal.

* "The Quaternion Group as a Symmetry Group," by Vi Hart and Henry Segerman

Wednesday, June 4, 2014

Monkey Business

Filed under: General,Geometry — Tags: — m759 @ 8:48 PM

The title refers to a Scientific American weblog item
discussed here on May 31, 2014:

Some closely related material appeared here on
Dec. 30, 2011:

IMAGE- Quaternion group acting on an eightfold cube

A version of the above quaternion actions appeared
at math.stackexchange.com on March 12, 2013:

"Is there a geometric realization of Quaternion group?" —

The above illustration, though neatly drawn, appeared under the
cloak of anonymity.  No source was given for the illustrated group actions.
Possibly they stem from my Log24 posts or notes such as the Jan. 4, 2012,
note on quaternion actions at finitegeometry.org/sc (hence ultimately
from my note "GL(2,3) actions on a cube" of April 5, 1985).

Friday, December 28, 2012

Cube Koan

Filed under: General,Geometry — Tags: , , , — m759 @ 4:56 AM
 

From Don DeLillo's novel Point Omega —

I knew what he was, or what he was supposed to be, a defense intellectual, without the usual credentials, and when I used the term it made him tense his jaw with a proud longing for the early weeks and months, before he began to understand that he was occupying an empty seat. "There were times when no map existed to match the reality we were trying to create."

"What reality?"

"This is something we do with every eyeblink. Human perception is a saga of created reality. But we were devising entities beyond the agreed-upon limits of recognition or interpretation. Lying is necessary. The state has to lie. There is no lie in war or in preparation for war that can't be defended. We went beyond this. We tried to create new realities overnight, careful sets of words that resemble advertising slogans in memorability and repeatability. These were words that would yield pictures eventually and then become three-dimensional. The reality stands, it walks, it squats. Except when it doesn't."

He didn't smoke but his voice had a sandlike texture, maybe just raspy with age, sometimes slipping inward, becoming nearly inaudible. We sat for some time. He was slouched in the middle of the sofa, looking off toward some point in a high corner of the room. He had scotch and water in a coffee mug secured to his midsection. Finally he said, "Haiku."

I nodded thoughtfully, idiotically, a slow series of gestures meant to indicate that I understood completely.

"Haiku means nothing beyond what it is. A pond in summer, a leaf in the wind. It's human consciousness located in nature. It's the answer to everything in a set number of lines, a prescribed syllable count. I wanted a haiku war," he said. "I wanted a war in three lines. This was not a matter of force levels or logistics. What I wanted was a set of ideas linked to transient things. This is the soul of haiku. Bare everything to plain sight. See what's there. Things in war are transient. See what's there and then be prepared to watch it disappear."

What's there—

This view of a die's faces 3, 6, and 5, in counter-
clockwise order (see previous post) suggests a way
of labeling the eight corners  of a die (or cube):

123, 135, 142, 154, 246, 263, 365, 456.

Here opposite faces of the die sum to 7, and the
three faces meeting at each corner are listed
in counter-clockwise order. (This corresponds
to a labeling of one of MacMahon's* 30 colored cubes.)
A similar vertex-labeling may be used in describing 
the automorphisms of the order-8 quaternion group.

For a more literary approach to quaternions, see
Pynchon's novel Against the Day .

* From Peter J. Cameron's weblog:

  "The big name associated with this is Major MacMahon,
   an associate of Hardy, Littlewood and Ramanujan,
   of whom Robert Kanigel said,

His expertise lay in combinatorics, a sort of
glorified dice-throwing, and in it he had made
contributions original enough to be named
a Fellow of the Royal Society.

   Glorified dice-throwing, indeed…"

Wednesday, November 14, 2012

Group Actions

Filed under: General,Geometry — Tags: — m759 @ 4:30 PM

The December 2012 Notices of the American
Mathematical Society  
has an ad on page 1564
(in a review of two books on vulgarized mathematics)
for three workshops next year on "Low-dimensional
Topology, Geometry, and Dynamics"—

(Only the top part of the ad is shown; for further details
see an ICERM page.)

(ICERM stands for Institute for Computational
and Experimental Research in Mathematics.)

The ICERM logo displays seven subcubes of
a 2x2x2 eight-cube array with one cube missing—

The logo, apparently a stylized image of the architecture 
of the Providence building housing ICERM, is not unlike
a picture of Froebel's Third Gift—

 

Froebel's third gift, the eightfold cube

© 2005 The Institute for Figuring

Photo by Norman Brosterman from the Inventing Kindergarten
exhibit at The Institute for Figuring (co-founded by Margaret Wertheim)

The eighth cube, missing in the ICERM logo and detached in the
Froebel Cubes photo, may be regarded as representing the origin
(0,0,0) in a coordinatized version of the 2x2x2 array—
in other words the cube invariant under linear , as opposed to
more general affine , permutations of the cubes in the array.

These cubes are not without relevance to the workshops' topics—
low-dimensional exotic geometric structures, group theory, and dynamics.

See The Eightfold Cube, A Simple Reflection Group of Order 168, and 
The Quaternion Group Acting on an Eightfold Cube.

Those who insist on vulgarizing their mathematics may regard linear
and affine group actions on the eight cubes as the dance of
Snow White (representing (0,0,0)) and the Seven Dwarfs—

.

Sunday, June 17, 2012

Congruent Group Actions

Filed under: General,Geometry — Tags: , , — m759 @ 9:00 PM

A Google search today yielded no results
for the phrase "congruent group actions."

Places where this phrase might prove useful include—

Saturday, June 16, 2012

Chiral Problem

Filed under: General,Geometry — Tags: , — m759 @ 1:06 AM

In memory of William S. Knowles, chiral chemist, who died last Wednesday (June 13, 2012)—

Detail from the Harvard Divinity School 1910 bookplate in yesterday morning's post

"ANDOVERHARVARD THEOLOGICAL LIBRARY"

Detail from Knowles's obituary in this  morning's New York Times

William Standish Knowles was born in Taunton, Mass., on June 1, 1917. He graduated a year early from the Berkshire School, a boarding school in western Massachusetts, and was admitted to Harvard. But after being strongly advised that he was not socially mature enough for college, he did a second senior year of high school at another boarding school, Phillips Academy in Andover, N.H.

Dr. Knowles graduated from Harvard with a bachelor’s degree in chemistry in 1939….

"This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them."

— Hermann Weyl, The Classical Groups, Princeton University Press, 1946, p. 16

From Pilate Goes to Kindergarten

The six congruent quaternion actions illustrated above are based on the following coordinatization of the eightfold cube

Problem: Is there a different coordinatization
 that yields greater symmetry in the pictures of
quaternion group actions?

A paper written in a somewhat similar spirit—

"Chiral Tetrahedrons as Unitary Quaternions"—

ABSTRACT: Chiral tetrahedral molecules can be dealt [with] under the standard of quaternionic algebra. Specifically, non-commutativity of quaternions is a feature directly related to the chirality of molecules….

Saturday, May 19, 2012

G8

Filed under: General,Geometry — Tags: — m759 @ 8:00 PM

"The  group of 8" is a phrase from politics, not mathematics.
Of the five groups of order 8 (see today's noon post),

the one pictured* in the center, Z2 × Z2 × Z2 , is of particular
interest. See The Eightfold Cube. For a connection of this 
group of 8 to the last of the five pictured at noon, the
quaternion group, see Finite Geometry and Physical Space.

* The picture is of the group's cycle graph.

Monday, May 7, 2012

More on Triality

Filed under: General,Geometry — Tags: — m759 @ 4:20 PM

John Baez wrote in 1996 ("Week 91") that

"I've never quite seen anyone come right out
and admit that triality arises from the
permutations of the unit vectors i, j, and k
in 3d Euclidean space."

Baez seems to come close to doing this with a
somewhat different i , j , and kHurwitz
quaternions
— in his 2005 book review
quoted here yesterday.

See also the Log24 post of Jan. 4 on quaternions,
and the following figures. The actions on cubes
in the lower figure may be viewed as illustrating
(rather indirectly) the relationship of the quaternion
group's 24 automorphisms to the 24 rotational
symmetries of the cube.

IMAGE- Actions of the unit quaternions in finite geometry, on a ninefold square and on an eightfold cube

Monday, April 9, 2012

Easter Act

Filed under: General,Geometry — Tags: — m759 @ 10:00 AM

Acts 12:4 —  

"And when he had apprehended him,
he put him  in prison, and delivered him 
to four quaternions of soldiers to keep him;
intending after Easter to bring him forth to the people."

With six you get egg roll.

Sunday, January 22, 2012

Souvenir*

Filed under: General,Geometry — Tags: — m759 @ 8:09 PM

From life's box of chocolates

Happy birthday to Piper Laurie.

* Those who prefer their
souvenirs without sentiment
may consult the quaternions.

Wednesday, January 4, 2012

Revision

Filed under: General,Geometry — Tags: , — m759 @ 8:00 PM

I revised the cubes image and added a new link to
an explanatory image in posts of Dec. 30 and Jan. 3
(and at finitegeometry.org). (The cubes now have
quaternion "i , j , k " labels and the cubes now
labeled "k " and "-k " were switched.)

I found some relevant remarks here and here.

Tuesday, January 3, 2012

Theorum

Filed under: General,Geometry — Tags: — m759 @ 7:48 AM

In memory of artist Ronald Searle

IMAGE- Ronald Searle, 'Pythagoras puzzled by one of my theorums,' from 'Down with Skool'

Searle reportedly died at 91 on December 30th.

From Log24 on that date

IMAGE- Quaternion group acting on an eightfold cube

Click the above image for some context.

Update of 9:29 PM EST Jan. 3, 2012

Theorum

 

From RationalWiki

Theorum (rhymes with decorum, apparently) is a neologism proposed by Richard Dawkins in The Greatest Show on Earth  to distinguish the scientific meaning of theory from the colloquial meaning. In most of the opening introduction to the show, he substitutes "theorum" for "theory" when referring to the major scientific theories such as evolution.

Problems with "theory"

Dawkins notes two general meanings for theory; the scientific one and the general sense that means a wild conjecture made up by someone as an explanation. The point of Dawkins inventing a new word is to get around the fact that the lay audience may not thoroughly understand what scientists mean when they say "theory of evolution". As many people see the phrase "I have a theory" as practically synonymous with "I have a wild guess I pulled out of my backside", there is often confusion about how thoroughly understood certain scientific ideas are. Hence the well known creationist argument that evolution is "just  a theory" – and the often cited response of "but gravity is also just  a theory".

To convey the special sense of thoroughness implied by the word theory in science, Dawkins borrowed the mathematical word "theorem". This is used to describe a well understood mathematical concept, for instance Pythagoras' Theorem regarding right angled triangles. However, Dawkins also wanted to avoid the absolute meaning of proof associated with that word, as used and understood by mathematicians. So he came up with something that looks like a spelling error. This would remove any person's emotional attachment or preconceptions of what the word "theory" means if it cropped up in the text of The Greatest Show on Earth , and so people would (in "theory ") have no other choice but to associate it with only the definition Dawkins gives.

This phrase has completely failed to catch on, that is, if Dawkins intended it to catch on rather than just be a device for use in The Greatest Show on Earth . When googled, Google will automatically correct the spelling to theorem instead, depriving this very page its rightful spot at the top of the results.

See also

 

Some backgound— In this journal, "Diamond Theory of Truth."

Wednesday, May 17, 2006

Wednesday May 17, 2006

Filed under: General — Tags: — m759 @ 4:29 AM

Tombstone

From today's New York Times:

Obituary

"Jiri Frel, a mercurial and eccentric curator who helped build the J. Paul Getty Museum into a major center for Greek and Roman art but resigned after revelations about unscrupulous acquisition practices, died on April 29. He was 82…. a well-regarded expert in Greek tombstones…."

News story

"ATHENS, May 16 — After four hours of talks here with the Greek culture minister, the director of the J. Paul Getty Museum in Los Angeles said Tuesday that he would press for the return of some of the Getty's most prized ancient artifacts to Greece…. Greece is seeking the repatriation of a… tombstone…."

From a photo accompanying the obituary:

The image “http://www.log24.com/log/pix06A/060517-Window.jpg” cannot be displayed, because it contains errors.
Museum
window

 

The image “http://www.log24.com/log/pix06A/060517-StarAndDiamond.bmp” cannot be displayed, because it contains errors.

To Aster, from Plato

Asteras eisathreis, Aster emos.
Eithe genoimen ouranos,
'os pollois ommasin eis se blepo.

You gaze at stars, my Star.
Would that I were born the starry sky,
that I with many eyes might gaze at you.

Related material:

Log24 entries of Dec. 31, 2002

Why Me?

Plato's Diamond

The Halmos Tombstone

Thursday, January 26, 2006

Thursday January 26, 2006

Filed under: General,Geometry — m759 @ 9:00 AM
In honor of Paul Newman’s age today, 81:

On Beauty

Elaine Scarry, On Beauty (pdf), page 21:

“Something beautiful fills the mind yet invites the search for something beyond itself, something larger or something of the same scale with which it needs to be brought into relation. Beauty, according to its critics, causes us to gape and suspend all thought. This complaint is manifestly true: Odysseus does stand marveling before the palm; Odysseus is similarly incapacitated in front of Nausicaa; and Odysseus will soon, in Book 7, stand ‘gazing,’ in much the same way, at the season-immune orchards of King Alcinous, the pears, apples, and figs that bud on one branch while ripening on another, so that never during the cycling year do they cease to be in flower and in fruit. But simultaneously what is beautiful prompts the mind to move chronologically back in the search for precedents and parallels, to move forward into new acts of creation, to move conceptually over, to bring things into relation, and does all this with a kind of urgency as though one’s life depended on it.”

The image “http://www.log24.com/theory/images/grid3x3.gif” cannot be displayed, because it contains errors.

The above symbol of Apollo suggests, in accordance with Scarry’s remarks, larger structures.   Two obvious structures are the affine 4-space over GF(3), with 81 points, and the affine plane over GF(32), also with 81 points.  Less obvious are some related projective structures.  Joseph Malkevitch has discussed the standard method of constructing GF(32) and the affine plane over that field, with 81 points, then constructing the related Desarguesian projective plane of order 9, with 92 + 9 + 1 = 91 points and 91 lines.  There are other, non-Desarguesian, projective planes of order 9.  See Visualizing GL(2,p), which discusses a spreadset construction of the non-Desarguesian translation plane of order 9.  This plane may be viewed as illustrating deeper properties of the 3×3 array shown above. To view the plane in a wider context, see The Non-Desarguesian Translation Plane of Order 9 and a paper on Affine and Projective Planes (pdf). (Click to enlarge the excerpt beow).

The image “http://www.log24.com/theory/images/060126-planes2.jpg” cannot be displayed, because it contains errors.

See also Miniquaternion Geometry: The Four Projective Planes of Order 9 (pdf), by Katie Gorder (Dec. 5, 2003), and a book she cites:

Miniquaternion geometry: An introduction to the study of projective planes, by T. G. Room and P. B. Kirkpatrick. Cambridge Tracts in Mathematics and Mathematical Physics, No. 60. Cambridge University Press, London, 1971. viii+176 pp.

For “miniquaternions” of a different sort, see my entry on Visible Mathematics for Hamilton’s birthday last year:

The image “http://www.log24.com/theory/images/Quaternions2.jpg” cannot be displayed, because it contains errors.

 

Thursday, August 25, 2005

Thursday August 25, 2005

Filed under: General,Geometry — m759 @ 3:09 PM
Analogical
Train of Thought

Part I: The 24-Cell

From S. H. Cullinane,
 Visualizing GL(2,p),
 March 26, 1985–

Visualizing the
binary tetrahedral group
(the 24-cell):

The image “http://www.log24.com/theory/images/VisuBinaryTetGrp.jpg” cannot be displayed, because it contains errors.

Another representation of
the 24-cell
:

The image “http://www.log24.com/theory/images/24-cell.jpg” cannot be displayed, because it contains errors.

 From John Baez,
This Week’s Finds in
Mathematical Physics (Week 198)
,”
September 6, 2003: 

Noam Elkies writes to John Baez:

Hello again,

You write:

[…]

“I’d like to wrap up with a few small comments about last Week.  There I said a bit about a 24-element group called the ‘binary tetrahedral group’, a 24-element group called SL(2,Z/3), and the vertices of a regular polytope in 4 dimensions called the ’24-cell’.  The most important fact is that these are all the same thing! And I’ve learned a bit more about this thing from here:”

[…]

Here’s yet another way to see this: the 24-cell is the subgroup of the unit quaternions (a.k.a. SU(2)) consisting of the elements of norm 1 in the Hurwitz quaternions – the ring of quaternions obtained from the Z-span of {1,i,j,k} by plugging up the holes at (1+i+j+k)/2 and its <1,i,j,k> translates. Call this ring A. Then this group maps injectively to A/3A, because for any g,g’ in the group |g-g’| is at most 2 so g-g’ is not in 3A unless g=g’. But for any odd prime p the (Z/pZ)-algebra A/pA is isomorphic with the algebra of 2*2 matrices with entries in Z/pZ, with the quaternion norm identified with the determinant. So our 24-element group injects into SL2(Z/3Z) – which is barely large enough to accommodate it. So the injection must be an isomorphism.

Continuing a bit longer in this vein: this 24-element group then injects into SL2(Z/pZ) for any odd prime p, but this injection is not an isomorphism once p>3. For instance, when p=5 the image has index 5 – which, however, does give us a map from SL2(Z/5Z) to the symmetric group of order 5, using the action of SL2(Z/5Z) by conjugation on the 5 conjugates of the 24-element group. This turns out to be one way to see the isomorphism of PSL2(Z/5Z) with the alternating group A5.

Likewise the octahedral and icosahedral groups S4 and A5 can be found in PSL2(Z/7Z) and PSL2(Z/11Z), which gives the permutation representations of those two groups on 7 and 11 letters respectively; and A5 is also an index-6 subgroup of PSL2(F9), which yields the identification of that group with A6.

NDE


The enrapturing discoveries of our field systematically conceal, like footprints erased in the sand, the analogical train of thought that is the authentic life of mathematics – Gian-Carlo Rota

Like footprints erased in the sand….

Part II: Discrete Space

The James Joyce School
 of Theoretical Physics
:


Log24, May 27, 2004

  “Hello! Kinch here. Put me on to Edenville. Aleph, alpha: nought, nought, one.” 

  “A very short space of time through very short times of space….
   Am I walking into eternity along Sandymount strand?”

   — James Joyce, Ulysses, Proteus chapter

A very short space of time through very short times of space….

   “It is demonstrated that space-time should possess a discrete structure on Planck scales.”

   — Peter Szekeres, abstract of Discrete Space-Time

   “A theory…. predicts that space and time are indeed made of discrete pieces.”

   — Lee Smolin in Atoms of Space and Time (pdf), Scientific American, Jan. 2004

   “… a fundamental discreteness of spacetime seems to be a prediction of the theory….”

   — Thomas Thiemann, abstract of Introduction to Modern Canonical Quantum General Relativity

   “Theories of discrete space-time structure are being studied from a variety of perspectives.”

   — Quantum Gravity and the Foundations of Quantum Mechanics at Imperial College, London

Disclaimer:

The above speculations by physicists
are offered as curiosities.
I have no idea whether
 any of them are correct.

Related material:

Stephen Wolfram offers a brief
History of Discrete Space.

For a discussion of space as discrete
by a non-physicist, see John Bigelow‘s
Space and Timaeus.

Part III: Quaternions
in a Discrete Space

Apart from any considerations of
physics, there are of course many
purely mathematical discrete spaces.
See Visible Mathematics, continued
 (Aug. 4, 2005):

The image “http://www.log24.com/theory/images/Quaternions2.jpg” cannot be displayed, because it contains errors.

Sunday, July 13, 2003

Sunday July 13, 2003

Filed under: General,Geometry — Tags: , — m759 @ 5:09 PM

ART WARS, 5:09

The Word in the Desert

For Harrison Ford in the desert.
(See previous entry.)

    Words strain,
Crack and sometimes break,
    under the burden,
Under the tension, slip, slide, perish,
Will not stay still. Shrieking voices
Scolding, mocking, or merely chattering,
Always assail them.
    The Word in the desert
Is most attacked by voices of temptation,
The crying shadow in the funeral dance,
The loud lament of
    the disconsolate chimera.

— T. S. Eliot, Four Quartets

The link to the word "devilish" in the last entry leads to one of my previous journal entries, "A Mass for Lucero," that deals with the devilishness of postmodern philosophy.  To hammer this point home, here is an attack on college English departments that begins as follows:

"William Faulkner's Snopes trilogy, which recounts the generation-long rise of the drily loathsome Flem Snopes from clerk in a country store to bank president in Jefferson, Mississippi, teems with analogies to what has happened to English departments over the past thirty years."

For more, see

The Word in the Desert,
by Glenn C. Arbery
.

See also the link on the word "contemptible," applied to Jacques Derrida, in my Logos and Logic page.

This leads to an National Review essay on Derrida,

The Philosopher as King,
by Mark Goldblatt

A reader's comment on my previous entry suggests the film "Scotland, PA" as viewing related to the Derrida/Macbeth link there.

I prefer the following notice of a 7-11 death, that of a powerful art museum curator who would have been well cast as Lady Macbeth:

Die Fahne Hoch,
Frank Stella,
1959


Dorothy Miller,
MOMA curator,

died at 99 on
July 11, 2003
.

From the Whitney Museum site:

"Max Anderson: When artist Frank Stella first showed this painting at The Museum of Modern Art in 1959, people were baffled by its austerity. Stella responded, 'What you see is what you see. Painting to me is a brush in a bucket and you put it on a surface. There is no other reality for me than that.' He wanted to create work that was methodical, intellectual, and passionless. To some, it seemed to be nothing more than a repudiation of everything that had come before—a rational system devoid of pleasure and personality. But other viewers saw that the black paintings generated an aura of mystery and solemnity.

The title of this work, Die Fahne Hoch, literally means 'The banner raised.'  It comes from the marching anthem of the Nazi youth organization. Stella pointed out that the proportions of this canvas are much the same as the large flags displayed by the Nazis.

But the content of the work makes no reference to anything outside of the painting itself. The pattern was deduced from the shape of the canvas—the width of the black bands is determined by the width of the stretcher bars. The white lines that separate the broad bands of black are created by the narrow areas of unpainted canvas. Stella's black paintings greatly influenced the development of Minimalism in the 1960s."

From Play It As It Lays:

   She took his hand and held it.  "Why are you here."
   "Because you and I, we know something.  Because we've been out there where nothing is.  Because I wanted—you know why."
   "Lie down here," she said after a while.  "Just go to sleep."
   When he lay down beside her the Seconal capsules rolled on the sheet.  In the bar across the road somebody punched King of the Road on the jukebox again, and there was an argument outside, and the sound of a bottle breaking.  Maria held onto BZ's hand.
   "Listen to that," he said.  "Try to think about having enough left to break a bottle over it."
   "It would be very pretty," Maria said.  "Go to sleep."

I smoke old stogies I have found…    

Cigar Aficionado on artist Frank Stella:

" 'Frank actually makes the moment. He captures it and helps to define it.'

This was certainly true of Stella's 1958 New York debut. Fresh out of Princeton, he came to New York and rented a former jeweler's shop on Eldridge Street on the Lower East Side. He began using ordinary house paint to paint symmetrical black stripes on canvas. Called the Black Paintings, they are credited with paving the way for the minimal art movement of the 1960s. By the fall of 1959, Dorothy Miller of The Museum of Modern Art had chosen four of the austere pictures for inclusion in a show called Sixteen Americans."

For an even more austere picture, see

Geometry for Jews:

For more on art, Derrida, and devilishness, see Deborah Solomon's essay in the New York Times Magazine of Sunday, June 27, 1999:

 How to Succeed in Art.

"Blame Derrida and
his fellow French theorists…."

See, too, my site

Art Wars: Geometry as Conceptual Art

For those who prefer a more traditional meditation, I recommend

Ecce Lignum Crucis

("Behold the Wood of the Cross")

THE WORD IN THE DESERT

For more on the word "road" in the desert, see my "Dead Poet" entry of Epiphany 2003 (Tao means road) as well as the following scholarly bibliography of road-related cultural artifacts (a surprising number of which involve Harrison Ford):

A Bibliography of Road Materials

Powered by WordPress