Log24

Monday, June 21, 2021

The Bauhaus Dance

Filed under: General — Tags: — m759 @ 10:04 pm

"If you have built castles in the air,
your work need not be lost;
that is where they should be.
Now put the foundations under them.”
— Henry David Thoreau

http://www.log24.com/log/pix11B/110714-BauhausRoof.jpg

Sunday, November 1, 2020

Art Theory

Filed under: General — Tags: , — m759 @ 2:37 pm

“If you have built castles in the air, your work need not be lost;
that is where they should be. Now put the foundations under them.”
— Henry David Thoreau

Between, or:  Interality Illustrated   (according to Sherald)

“We live in between the lines;
in between the cracks . . . .
That’s where the bonds are formed. ”

Amy Sherald

Tuesday, October 10, 2017

The 35-Year Wait

Filed under: G-Notes,General,Geometry — m759 @ 11:17 am

From the Web this morning —

A different 35-year wait:

A monograph of August 1976 —

Thirty-five years later, in a post of August 2011, "Coordinated Steps" —

'The Seven Dwarfs and their Diamond Mine

"SEE HEAR READ" — Walt Disney Productions

Some other diamond-mine productions —

 Image -- The cast of 1937's 'King Solomon's Mines' goes back to the future

Saturday, August 20, 2011

Castles in the Air

Filed under: General,Geometry — Tags: , — m759 @ 12:00 pm

"… the Jews have discovered a way to access a fourth spatial dimension."
— Clifford Pickover, description of his novel Jews in Hyperspace

"If you have built castles in the air, your work need not be lost;
that is where they should be. Now put the foundations under them.”
— Henry David Thoreau

"King Solomon's Mines," 1937—

Image -- The cast of 1937's 'King Solomon's Mines' goes back to the future

The image above is an illustration from  "Romancing the Hyperspace," May 4, 2010.

Happy birthday to the late Salomon Bochner.

Monday, May 10, 2010

Requiem for Georgia Brown

Filed under: General — m759 @ 2:45 am

Image-- Lena Horne in 'Cabin in the Sky'

Paul Robeson in
"King Solomon's Mines," 1937—

Image -- The cast of 1937's 'King Solomon's Mines' goes back to the future

The image above is an illustration from
  "Romancing the Hyperspace," May 4, 2010.

This illustration, along with Georgia Brown's
song from "Cabin in the Sky"—
"There's honey in the honeycomb"—
suggests the following picture.

Image-- Galois Tesseract and Hyperspace (the 4-space over GF(2)). Source: Coxeter's 'Twisted Honeycombs'

"What might have been and what has been
   Point to one end, which is always present."
Four Quartets

Tuesday, May 4, 2010

Mathematics and Narrative, continued

Filed under: General,Geometry — Tags: , , — m759 @ 8:28 pm

Romancing the
Non-Euclidean Hyperspace

Backstory
Mere Geometry, Types of Ambiguity,
Dream Time, and Diamond Theory, 1937

The cast of 1937's 'King Solomon's Mines' goes back to the future

For the 1937 grid, see Diamond Theory, 1937.

The grid is, as Mere Geometry points out, a non-Euclidean hyperspace.

For the diamonds of 2010, see Galois Geometry and Solomon’s Cube.

Saturday, July 20, 2002

Saturday July 20, 2002

 

ABSTRACT: Finite projective geometry explains the surprising symmetry properties of some simple graphic designs– found, for instance, in quilts. Links are provided for applications to sporadic simple groups (via the "Miracle Octad Generator" of R. T. Curtis), to the connection between orthogonal Latin squares and projective spreads, and to symmetry of Walsh functions.

We regard the four-diamond figure D above as a 4×4 array of two-color diagonally-divided square tiles.

Let G be the group of 322,560 permutations of these 16 tiles generated by arbitrarily mixing random permutations of rows and of columns with random permutations of the four 2×2 quadrants.

THEOREM: Every G-image of D (as at right, below) has some ordinary or color-interchange symmetry.

Example:


For an animated version, click here.

Remarks:

Some of the patterns resulting from the action of G on D have been known for thousands of years. (See Jablan, Symmetry and Ornament, Ch. 2.6.) It is perhaps surprising that the patterns' interrelationships and symmetries can be explained fully only by using mathematics discovered just recently (relative to the patterns' age)– in particular, the theory of automorphism groups of finite geometries.

Using this theory, we can summarize the patterns' properties by saying that G is isomorphic to the affine group A on the linear 4-space over GF(2) and that the 35 structures of the 840 = 35 x 24 G-images of D are isomorphic to the 35 lines in the 3-dimensional projective space over GF(2).

This can be seen by viewing the 35 structures as three-sets of line diagrams, based on the three partitions of the four-set of square two-color tiles into two two-sets, and indicating the locations of these two-sets of tiles within the 4×4 patterns. The lines of the line diagrams may be added in a binary fashion (i.e., 1+1=0). Each three-set of line diagrams sums to zero– i.e., each diagram in a three-set is the binary sum of the other two diagrams in the set. Thus, the 35 three-sets of line diagrams correspond to the 35 three-point lines of the finite projective 3-space PG(3,2).

For example, here are the line diagrams for the figures above:

 
Shown below are the 15 possible line diagrams resulting from row/column/quadrant permutations. These 15 diagrams may, as noted above, be regarded as the 15 points of the projective 3-space PG(3,2).


The symmetry of the line diagrams accounts for the symmetry of the two-color patterns. (A proof shows that a 2nx2n two-color triangular half-squares pattern with such line diagrams must have a 2×2 center with a symmetry, and that this symmetry must be shared by the entire pattern.)

Among the 35 structures of the 840 4×4 arrays of tiles, orthogonality (in the sense of Latin-square orthogonality) corresponds to skewness of lines in the finite projective space PG(3,2). This was stated by the author in a 1978 note. (The note apparently had little effect. A quarter-century later, P. Govaerts, D. Jungnickel, L. Storme, and J. A. Thas wrote that skew (i.e., nonintersecting) lines in a projective space seem "at first sight not at all related" to orthogonal Latin squares.)

We can define sums and products so that the G-images of D generate an ideal (1024 patterns characterized by all horizontal or vertical "cuts" being uninterrupted) of a ring of 4096 symmetric patterns. There is an infinite family of such "diamond" rings, isomorphic to rings of matrices over GF(4).

The proof uses a decomposition technique for functions into a finite field that might be of more general use.

The underlying geometry of the 4×4 patterns is closely related to the Miracle Octad Generator of R. T. Curtis– used in the construction of the Steiner system S(5,8,24)– and hence is also related to the Leech lattice, which, as Walter Feit has remarked, "is a blown up version of S(5,8,24)."

For a movable JavaScript version of these 4×4 patterns, see The Diamond 16 Puzzle.

The above is an expanded version of Abstract 79T-A37, "Symmetry invariance in a diamond ring," by Steven H. Cullinane, Notices of the American Mathematical Society, February 1979, pages A-193, 194.

For a discussion of other cases of the theorem, click here.

Related pages:

The Diamond 16 Puzzle

Diamond Theory in 1937:
A Brief Historical Note

Notes on Finite Geometry

Geometry of the 4×4 Square

Binary Coordinate Systems

The 35 Lines of PG(3,2)

Map Systems:
Function Decomposition over a Finite Field

The Diamond Theorem–
The 2×2, the 2x2x2, the 4×4, and the 4x4x4 Cases

Diamond Theory

Latin-Square Geometry

Walsh Functions

Inscapes

The Diamond Theory of Truth

Geometry of the I Ching

Solomon's Cube and The Eightfold Way

Crystal and Dragon in Diamond Theory

The Form, the Pattern

The Grid of Time

Block Designs

Finite Relativity

Theme and Variations

Models of Finite Geometries

Quilt Geometry

Pattern Groups

The Fano Plane Revisualized,
or the Eightfold Cube

The Miracle Octad Generator

Kaleidoscope

Visualizing GL(2,p)

Jung's Imago

Author's home page

AMS Mathematics Subject Classification:

20B25 (Group theory and generalizations :: Permutation groups :: Finite automorphism groups of algebraic, geometric, or combinatorial structures)

05B25 (Combinatorics :: Designs and configurations :: Finite geometries)

51E20 (Geometry :: Finite geometry and special incidence structures :: Combinatorial structures in finite projective spaces)



Creative Commons License
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
.

Page created Jan. 6, 2006, by Steven H. Cullinane      diamondtheorem.com

 

Initial Xanga entry.  Updated Nov. 18, 2006.

Powered by WordPress