Log24

Monday, October 15, 2018

Tesserae for a Tesseract

Filed under: General — Tags: , — m759 @ 8:22 PM

The source —

Monday, March 12, 2018

“Quantum Tesseract Theorem?”

Filed under: General,Geometry — Tags: , , — m759 @ 11:00 AM

Remarks related to a recent film and a not-so-recent film.

For some historical background, see Dirac and Geometry in this journal.

Also (as Thas mentions) after Saniga and Planat —

The Saniga-Planat paper was submitted on December 21, 2006.

Excerpts from this  journal on that date —

A Halmos tombstone and the tale of HAL and the pod bay doors

     "Open the pod bay doors, HAL."

Saturday, May 20, 2017

van Lint and Wilson Meet the Galois Tesseract*

Filed under: General,Geometry — Tags: — m759 @ 12:12 AM

Click image to enlarge.

The above 35 projective lines, within a 4×4 array —


The above 15 projective planes, within a 4×4 array (in white) —

* See Galois Tesseract  in this journal.

Thursday, May 11, 2017

Reopening the Tesseract

Filed under: General,Geometry — Tags: — m759 @ 11:27 AM

Dialogue from the film "Interstellar" —

Cooper: Did it work?

TARS: I think it might have.

Cooper: How do you know?

TARS: Because the bulk beings
            are closing the tesseract.

Related material — "Bulk apperception"
in this journal, and

Wednesday, December 28, 2016

Rosetta Tesseracts

Filed under: General — m759 @ 9:00 AM

Click to enlarge.

Related material Folk Etymology  (Dec. 10, 2016).

Tuesday, March 24, 2015

Brouwer on the Galois Tesseract

Filed under: General,Geometry — Tags: , — m759 @ 12:00 PM

Yesterday's post suggests a review of the following —

Andries Brouwer, preprint, 1982:

"The Witt designs, Golay codes and Mathieu groups"
(unpublished as of 2013)

Pages 8-9:

Substructures of S(5, 8, 24)

An octad is a block of S(5, 8, 24).

Theorem 5.1

Let B0 be a fixed octad. The 30 octads disjoint from B0
form a self-complementary 3-(16,8,3) design, namely 

the design of the points and affine hyperplanes in AG(4, 2),
the 4-dimensional affine space over F2.

Proof….

… (iv) We have AG(4, 2).

(Proof: invoke your favorite characterization of AG(4, 2) 
or PG(3, 2), say 
Dembowski-Wagner or Veblen & Young. 

An explicit construction of the vector space is also easy….)

Related material:  Posts tagged Priority.

Tuesday, December 10, 2013

Wittgenstein’s Tesseract

Filed under: General,Geometry — m759 @ 5:14 PM

See also last night's "Pink Champagne on Ice" post.
The "ice" in that post's title refers to the white lines
forming a tesseract in the book cover's background—
"icy white and crystalline," as Johnny Mercer put it.
(A Tune for Josefine, Nov. 25.)

See also the tag Diamond Theory tesseract in this journal.

Saturday, July 6, 2013

The People’s Tesseract*

Filed under: General,Geometry — Tags: — m759 @ 9:57 AM

From Andries Brouwer

Image related, very loosely, to Falstaff's 'green fields'

* Related material:  Yesterday's evening post and The People's Cube
  (By the way, any  4×4 array is a tesseract .)

Thursday, August 16, 2012

Raiders of the Lost Tesseract

Filed under: General,Geometry — Tags: — m759 @ 8:00 PM

(Continued from August 13. See also Coxeter Graveyard.)

Coxeter exhuming Geometry

Here the tombstone says
"GEOMETRY… 600 BC — 1900 AD… R.I.P."

In the geometry of Plato illustrated below,
"the figure of eight [square] feet" is not , at this point
in the dialogue, the diamond in Jowett's picture.

An 1892 figure by Jowett illustrating Plato's Meno

Jowett's picture is nonetheless of interest for
its resemblance to a figure drawn some decades later
by the Toronto geometer H. S. M. Coxeter.

A similar 1950 figure by Coxeter illustrating a tesseract

For a less scholarly, but equally confusing, view of the number 8,
see The Eight , a novel by Katherine Neville.

Monday, August 13, 2012

Raiders of the Lost Tesseract

Filed under: General,Geometry — Tags: — m759 @ 3:33 PM

(An episode of Mathematics and Narrative )

A report on the August 9th opening of Sondheim's Into the Woods

Amy Adams… explained why she decided to take on the role of the Baker’s Wife.

“It’s the ‘Be careful what you wish’ part,” she said. “Since having a child, I’m really aware that we’re all under a social responsibility to understand the consequences of our actions.” —Amanda Gordon at businessweek.com

Related material—

Amy Adams in Sunshine Cleaning  "quickly learns the rules and ropes of her unlikely new market. (For instance, there are products out there specially formulated for cleaning up a 'decomp.')" —David Savage at Cinema Retro

Compare and contrast…

1.  The following item from Walpurgisnacht 2012

IMAGE- Excerpt from 'Unified Approach to Functional Decompositions of Switching Functions,' by Marek A. Perkowski et al., 1995

2.  The six partitions of a tesseract's 16 vertices 
       into four parallel faces in Diamond Theory in 1937

Sunday, July 29, 2012

The Galois Tesseract

Filed under: General,Geometry — Tags: , — m759 @ 11:00 PM

(Continued)

The three parts of the figure in today's earlier post "Defining Form"—

IMAGE- Hyperplanes (square and triangular) in PG(3,2), and coordinates for AG(4,2)

— share the same vector-space structure:

   0     c     d   c + d
   a   a + c   a + d a + c + d
   b   b + c   b + d b + c + d
a + b a + b + c a + b + d   a + b + 
  c + d

   (This vector-space a b c d  diagram is from  Chapter 11 of 
    Sphere Packings, Lattices and Groups , by John Horton
    Conway and N. J. A. Sloane, first published by Springer
    in 1988.)

The fact that any  4×4 array embodies such a structure was implicit in
the diamond theorem (February 1979). Any 4×4 array, regarded as
a model of the finite geometry AG(4, 2), may be called a Galois tesseract.
(So called because of the Galois geometry involved, and because the
16 cells of a 4×4 array with opposite edges identified have the same
adjacency pattern as the 16 vertices of a tesseract (see, for instance,
Coxeter's 1950 "Self-Dual Configurations and Regular Graphs," figures
5 and 6).)

A 1982 discussion of a more abstract form of AG(4, 2):

Source:

The above 1982 remarks by Brouwer may or may not have influenced
the drawing of the above 1988 Conway-Sloane diagram.

Monday, June 4, 2012

Cube to Tesseract

Filed under: General — m759 @ 10:30 AM

Yesterday's post Child's Play displayed a cube formed
by a Hasse diagram of the 8 subsets of a 3-set.*

This suggests a review of a post from last January

IMAGE- Tesseract (i.e., hypercube) formed by a Hasse diagram of the 16 subsets of a 4-element set

* See a comment on yesterday's post relating it to earlier,
  very similar, remarks by Margaret Masterman.
  I was unaware yesterday that those remarks exist. 

Tuesday, January 31, 2012

Tesseract

Filed under: General,Geometry — Tags: — m759 @ 12:21 PM

“… a finite set with  elements
is sometimes called an n-set ….”

Tesseract formed from a 4-set—

IMAGE- Tesseract.


The same 16 subsets or points can
be arranged in a 4×4 array that has,
when the array’s opposite edges are
joined together, the same adjacencies
as those of the above tesseract.

“There is  such a thing as a 4-set.”
— Saying adapted from a novel   

Update of August 12, 2012:

Figures like the above, with adjacent vertices differing in only one coordinate,
appear in a 1950 paper of H. S. M. Coxeter—

Saturday, September 3, 2011

The Galois Tesseract (continued)

Filed under: General,Geometry — Tags: , — m759 @ 1:00 PM

A post of September 1, The Galois Tesseract, noted that the interplay
of algebraic and geometric properties within the 4×4 array that forms
two-thirds of the Curtis Miracle Octad Generator (MOG) may first have
been described by Cullinane (AMS abstract 79T-A37, Notices , Feb. 1979).

Here is some supporting material—

http://www.log24.com/log/pix11B/110903-Carmichael-Conway-Curtis.jpg

The passage from Carmichael above emphasizes the importance of
the 4×4 square within the MOG.

The passage from Conway and Sloane, in a book whose first edition
was published in 1988, makes explicit the structure of the MOG's
4×4 square as the affine 4-space over the 2-element Galois field.

The passage from Curtis (1974, published in 1976) describes 35 sets
of four "special tetrads" within the 4×4 square of the MOG. These
correspond to the 35 sets of four parallel 4-point affine planes within
the square. Curtis, however, in 1976 makes no mention of the affine
structure, characterizing his 140 "special tetrads" rather by the parity
of their intersections with the square's rows and columns.

The affine structure appears in the 1979 abstract mentioned above—

IMAGE- An AMS abstract from 1979 showing how the affine group AGL(4,2) of 322,560 transformations acts on a 4x4 square

The "35 structures" of the abstract were listed, with an application to
Latin-square orthogonality, in a note from December 1978

IMAGE- Projective-space structure and Latin-square orthogonality in a set of 35 square arrays

See also a 1987 article by R. T. Curtis—

Further elementary techniques using the miracle octad generator
, by R. T. Curtis. Abstract:

“In this paper we describe various techniques, some of which are already used by devotees of the art, which relate certain maximal subgroups of the Mathieu group M24, as seen in the MOG, to matrix groups over finite fields. We hope to bring out the wealth of algebraic structure* underlying the device and to enable the reader to move freely between these matrices and permutations. Perhaps the MOG was mis-named as simply an ‘octad generator’; in this paper we intend to show that it is in reality a natural diagram of the binary Golay code.”

(Received July 20 1987)

Proceedings of the Edinburgh Mathematical Society (Series 2) (1989), 32: 345-353

* For instance:

Algebraic structure in the 4x4 square, by Cullinane (1985) and Curtis (1987)

Update of Sept. 4— This post is now a page at finitegeometry.org.

Thursday, September 1, 2011

The Galois Tesseract

Filed under: General,Geometry — Tags: , — m759 @ 7:11 PM

Click to enlarge

IMAGE- The Galois Tesseract, 1979-1999

IMAGE- Review of Conway and Sloane's 'Sphere Packings...' by Rota

Tuesday, August 6, 2019

Mathematics and Narrative:  The Crosswicks Curse Continues.

Filed under: General — m759 @ 7:03 PM

"There is  such a thing as a desktop."

— Saying adapted from a 1962 young-adult novel.

Sunday, July 14, 2019

Old Pathways in Science:

Filed under: General — Tags: — m759 @ 12:37 PM

The Quantum Tesseract Theorem Revisited

From page 274 — 

"The secret  is that the super-mathematician expresses by the anticommutation
of  his operators the property which the geometer conceives as  perpendicularity
of displacements.  That is why on p. 269 we singled out a pentad of anticommuting
operators, foreseeing that they would have an immediate application in describing
the property of perpendicular directions without using the traditional picture of space.
They express the property of perpendicularity without the picture of perpendicularity.

Thus far we have touched only the fringe of the structure of our set of sixteen E-operators.
Only by entering deeply into the theory of electrons could I show the whole structure
coming into evidence."

A related illustration, from posts tagged Dirac and Geometry —

Anticommuting Dirac matrices as spreads of projective lines

Compare and contrast Eddington's use of the word "perpendicular"
with a later use of the word by Saniga and Planat.

Tuesday, July 9, 2019

Perception of Space

Filed under: General — Tags: , — m759 @ 10:45 AM

(Continued)

The three previous posts have now been tagged . . .

Tetrahedron vs. Square  and  Triangle vs. Cube.

Related material —

Tetrahedron vs. Square:

Labeling the Tetrahedral Model  (Click to enlarge) —

Triangle vs. Cube:

and, from the date of the above John Baez remark —

Monday, July 8, 2019

Exploring Schoolgirl Space

Filed under: General — Tags: , , , — m759 @ 9:48 AM

See also "Quantum Tesseract Theorem" and "The Crosswicks Curse."

Thursday, July 4, 2019

From Devil’s Night 2014

Filed under: General — m759 @ 7:59 AM

And now, General, time presses; and America is in a hurry.
Have you realized that though you may occupy towns and win battles,
you cannot conquer a nation? — The Devil's Disciple

A figure related to Dürer's "magic" square posted during Devil's Night —

Tuesday, April 9, 2019

Zero Dark Nine:

Filed under: General — Tags: — m759 @ 12:09 AM

The Crosswicks Curse Continues . . .

"There is  such a thing as geometry."

— Saying adapted from a 1962 young-adult novel.

Monday, March 11, 2019

Ant-Man Meets Doctor Strange

Filed under: General — m759 @ 1:22 PM

IMAGE- Concepts of Space

The 4×4 square may also be called the Galois Tesseract .
By analogy, the 4x4x4 cube may be called the Galois Hexeract .

"Think outside the tesseract.

Overarching Metanarratives

Filed under: General — m759 @ 4:15 AM

See also "Overarching + Tesseract" in this  journal. From the results
of that search, some context for the "inscape" of the previous post —

Anticommuting Dirac matrices as spreads of projective lines

Ron Shaw on the 15 lines of the classical generalized quadrangle W(2), a general linear complex in PG(3,2)

Wednesday, March 6, 2019

The Relativity Problem and Burkard Polster

Filed under: General,Geometry — Tags: — m759 @ 11:28 AM
 

From some 1949 remarks of Weyl—

"The relativity problem is one of central significance throughout geometry and algebra and has been recognized as such by the mathematicians at an early time."

— Hermann Weyl, "Relativity Theory as a Stimulus in Mathematical Research," Proceedings of the American Philosophical Society , Vol. 93, No. 7, Theory of Relativity in Contemporary Science: Papers Read at the Celebration of the Seventieth Birthday of Professor Albert Einstein in Princeton, March 19, 1949  (Dec. 30, 1949), pp. 535-541

Weyl in 1946—:

"This is the relativity problem: to fix objectively a class of equivalent coordinatizations and to ascertain the group of transformations S mediating between them."

— Hermann Weyl, The Classical Groups , Princeton University Press, 1946, p. 16

For some context, see Relativity Problem  in this journal.

In the case of PG(3,2), there is a choice of geometric models 
to be coordinatized: two such models are the traditional
tetrahedral model long promoted by Burkard Polster, and
the square model of Steven H. Cullinane.

The above Wikipedia section tacitly (and unfairly) assumes that
the model being coordinatized is the tetrahedral model. For
coordinatization of the square model, see (for instance) the webpage
Finite Relativity.

For comparison of the two models, see a figure posted here on
May 21, 2014 —

Labeling the Tetrahedral Model  (Click to enlarge) —

"Citation needed" —

The anonymous characters who often update the PG(3,2) Wikipedia article
probably would not consider my post of 2014, titled "The Tetrahedral
Model of PG(3,2)
," a "reliable source."

Thursday, February 28, 2019

Wikipedia Scholarship

Filed under: General — Tags: , , — m759 @ 12:31 PM

Cullinane's Square Model of PG(3,2)

Besides omitting the name Cullinane, the anonymous Wikipedia author
also omitted the step of representing the hypercube by a 4×4 array —
an array called in this  journal a Galois  tesseract.

Sunday, February 17, 2019

See Also …

Filed under: General — Tags: — m759 @ 12:31 PM

"And the Führer digs for trinkets in the desert."

"See also Acht "
— Cambridge German-English Dictionary, article on "Elf "

Wednesday, December 12, 2018

An Inscape for Douthat

Filed under: G-Notes,General,Geometry — Tags: , — m759 @ 9:41 AM

Some images, and a definition, suggested by my remarks here last night
on Apollo and Ross Douthat's remarks today on "The Return of Paganism" —

Detail of Feb. 20, 1986, note by Steven H. Cullinane on Weyl's 'relativity problem'

Kibler's 2008 'Variations on a theme' illustrated.

In finite geometry and combinatorics,
an inscape  is a 4×4 array of square figures,
each figure picturing a subset of the overall 4×4 array:


 

Related material — the phrase
"Quantum Tesseract Theorem" and  

A.  An image from the recent
      film "A Wrinkle in Time" — 

B.  A quote from the 1962 book —

"There's something phoney
in the whole setup, Meg thought.
There is definitely something rotten
in the state of Camazotz."

Tuesday, November 13, 2018

Blackboard Jungle Continues.

Filed under: G-Notes,General,Geometry — m759 @ 6:19 PM

From the 1955 film "Blackboard Jungle" —

From a trailer for the recent film version of A Wrinkle in Time

Detail of the phrase "quantum tesseract theorem":

From the 1962 book —

"There's something phoney
in the whole setup, Meg thought.
There is definitely something rotten
in the state of Camazotz."

Related mathematics from Koen Thas that some might call a
"quantum tesseract theorem" —

Some background —

Koen Thas, 'Unextendible Mututally Unbiased Bases' (2016)

See also posts tagged Dirac and Geometry. For more
background on finite  geometry, see a web page
at Thas's institution, Ghent University.

Monday, October 15, 2018

History at Bellevue

Filed under: General,Geometry — Tags: , — m759 @ 9:38 PM

The previous post, "Tesserae for a Tesseract," contains the following
passage from a 1987 review of a book about Finnegans Wake

"Basically, Mr. Bishop sees the text from above
and as a whole — less as a sequential story than
as a box of pied type or tesserae for a mosaic,
materials for a pattern to be made."

A set of 16 of the Wechsler cubes below are tesserae that 
may be used to make patterns in the Galois tesseract.

Another Bellevue story —

“History, Stephen said, is a nightmare
from which I am trying to awake.”

— James Joyce, Ulysses

Tuesday, September 4, 2018

MBTI at the Church of St. Frank*

Filed under: General — m759 @ 10:45 AM

(Suggested by the previous post)

http://www.log24.com/log/pix18/180904-MBTI-Tesseract-post-141107.jpg

* For the church, see Kermode + Garber.

Wednesday, June 27, 2018

Taken In

Filed under: General,Geometry — Tags: , — m759 @ 9:36 AM

A passage that may or may not have influenced Madeleine L'Engle's
writings about the tesseract :

From Mere Christianity , by C. S. Lewis (1952) —

"Book IV – Beyond Personality:
or First Steps in the Doctrine of the Trinity"
. . . .

I warned you that Theology is practical. The whole purpose for which we exist is to be thus taken into the life of God. Wrong ideas about what that life is, will make it harder. And now, for a few minutes, I must ask you to follow rather carefully.

You know that in space you can move in three ways—to left or right, backwards or forwards, up or down. Every direction is either one of these three or a compromise between them. They are called the three Dimensions. Now notice this. If you are using only one dimension, you could draw only a straight line. If you are using two, you could draw a figure: say, a square. And a square is made up of four straight lines. Now a step further. If you have three dimensions, you can then build what we call a solid body, say, a cube—a thing like a dice or a lump of sugar. And a cube is made up of six squares.

Do you see the point? A world of one dimension would be a straight line. In a two-dimensional world, you still get straight lines, but many lines make one figure. In a three-dimensional world, you still get figures but many figures make one solid body. In other words, as you advance to more real and more complicated levels, you do not leave behind you the things you found on the simpler levels: you still have them, but combined in new ways—in ways you could not imagine if you knew only the simpler levels.

Now the Christian account of God involves just the same principle. The human level is a simple and rather empty level. On the human level one person is one being, and any two persons are two separate beings—just as, in two dimensions (say on a flat sheet of paper) one square is one figure, and any two squares are two separate figures. On the Divine level you still find personalities; but up there you find them combined in new ways which we, who do not live on that level, cannot imagine.

In God's dimension, so to speak, you find a being who is three Persons while remaining one Being, just as a cube is six squares while remaining one cube. Of course we cannot fully conceive a Being like that: just as, if we were so made that we perceived only two dimensions in space we could never properly imagine a cube. But we can get a sort of faint notion of it. And when we do, we are then, for the first time in our lives, getting some positive idea, however faint, of something super-personal—something more than a person. It is something we could never have guessed, and yet, once we have been told, one almost feels one ought to have been able to guess it because it fits in so well with all the things we know already.

You may ask, "If we cannot imagine a three-personal Being, what is the good of talking about Him?" Well, there isn't any good talking about Him. The thing that matters is being actually drawn into that three-personal life, and that may begin any time —tonight, if you like.

. . . .

But beware of being drawn into the personal life of the Happy Family .

https://www.jstor.org/stable/24966339

"The colorful story of this undertaking begins with a bang."

And ends with

Martin Gardner on Galois

"Galois was a thoroughly obnoxious nerd,
 suffering from what today would be called
 a 'personality disorder.'  His anger was
 paranoid and unremitting."

Thursday, June 21, 2018

Models of Being

Filed under: General,Geometry — Tags: — m759 @ 11:30 AM

A Buddhist view —

"Just fancy a scale model of Being 
made out of string and cardboard."

— Nanavira Thera, 1 October 1957,
on a model of Kummer's Quartic Surface
mentioned by Eddington

A Christian view —

A formal view —

From a Log24 search for High Concept:

See also Galois Tesseract.

Monday, June 11, 2018

Arty Fact

Filed under: General,Geometry — Tags: , , — m759 @ 10:35 PM

The title was suggested by the name "ARTI" of an artificial
intelligence in the new film 2036: Origin Unknown.

The Eye of ARTI —

See also a post of May 19, "Uh-Oh" —

— and a post of June 6, "Geometry for Goyim" — 

Mystery box  merchandise from the 2011  J. J. Abrams film  Super 8 

An arty fact I prefer, suggested by the triangular computer-eye forms above —

IMAGE- Hyperplanes (square and triangular) in PG(3,2), and coordinates for AG(4,2)

This is from the July 29, 2012, post The Galois Tesseract.

See as well . . .

Sunday, June 10, 2018

Pieces of April

Filed under: General — Tags: — m759 @ 12:25 AM

This journal on April 16, 2018 —

Happy birthday to Pope Emeritus Benedict XVI.

Related material from another weblog in a post also dated April 16, 2018 —

"As I write this, it’s April 5, midway through the eight-day
festival of Passover. During this holiday, we Jews air our
grievances against the ancient Pharaoh who enslaved
and oppressed us, and celebrate the feats of strength
with which the Almighty delivered us from bondage —
wait a minute, I think I’m mixing up Passover with Festivus."
. . . .

"Next month: Time and Tesseracts."

From that next post, dated May 16, 2018 —

"The tesseract entered popular culture through
Madeleine L’Engle’s 'A Wrinkle in Time' . . . ."

The post's author, James Propp, notes that

" L’Engle caused some of her readers confusion
when one of the characters … the prodigy
Charles Wallace Murray [sic ] , declared 'Well, the fifth
dimension’s a tesseract.' "

Propp is not unfamiliar with prodigies:

"When I was a kid living in the Long Island suburbs,
I sometimes got called a math genius. I didn’t think
the label was apt, but I didn’t mind it; being put in
the genius box came with some pretty good perks."

— "The Genius Box," a post dated March 16, 2018

To me, Propp seems less like Charles Wallace
and more like the Prime Coordinator —

For further details, see the following synchronicity checks:

Propp March 16     Log24 March 16

Propp April 16        Log24 April 16

Propp May 16        Log24 May 16 .

Tuesday, May 1, 2018

Wake

Filed under: General — Tags: , — m759 @ 2:29 PM

Remarks on space from 1998 by sci-fi author Robert J. Sawyer quoted
here on Sunday (see the tag "Sawyer's Space") suggest a review of
rather similar remarks on space from 1977 by sci-fi author M. A. Foster
(see the tag "Foster's Space"):

Quoted here on September 26, 2012

"All she had to do was kick off and flow."

— The Gameplayers of Zan

"I'se so silly to be flowing but I no canna stay."

— Finnegans Wake

Another work by Sawyer —

Sunday, April 29, 2018

Sermon

Filed under: General — Tags: — m759 @ 11:00 AM

'Imprisoned in a tesseract' in a 1998 science fiction novel

Wednesday, April 25, 2018

A Deathly Triangle

Filed under: General,Geometry — Tags: , — m759 @ 11:27 PM

'Imprisoned in a Tesseract,' a study of novelist James Blish

Thursday, March 29, 2018

“Before Creation Itself . . .”

Filed under: General,Geometry — Tags: — m759 @ 10:13 AM

 From the Diamond Theorem Facebook page —

A question three hours ago at that page

"Is this Time Cube?"

Notes toward an answer —

And from Six-Set Geometry in this journal . . .

Sunday, March 11, 2018

Blackboard Jungle Continues . . .

Filed under: General — m759 @ 10:28 AM

. . . With intolerable disrespect for the word …
In particular, the word "theorem."
 

See also "Quantum Tesseract Theorem" in this  journal.

Thursday, March 8, 2018

Thanking the Academy…

Filed under: General,Geometry — m759 @ 9:11 PM

Continues.

Thursday, January 25, 2018

Beware of Analogical Extension

Filed under: General,Geometry — Tags: — m759 @ 11:29 AM

"By an archetype  I mean a systematic repertoire
of ideas by means of which a given thinker describes,
by analogical extension , some domain to which
those ideas do not immediately and literally apply."

— Max Black in Models and Metaphors 
    (Cornell, 1962, p. 241)

"Others … spoke of 'ultimate frames of reference' …."
Ibid.

A "frame of reference" for the concept  four quartets

A less reputable analogical extension  of the same
frame of reference

Madeleine L'Engle in A Swiftly Tilting Planet :

"… deep in concentration, bent over the model
they were building of a tesseract:
the square squared, and squared again…."

See also the phrase Galois tesseract .

Wednesday, January 24, 2018

The Pentagram Papers

Filed under: General,Geometry — Tags: — m759 @ 12:40 PM

(Continued)

From a Log24 post of March 4, 2008 —

SINGER, ISAAC:
"Are Children the Ultimate Literary Critics?"
— Top of the News 29 (Nov. 1972): 32-36.

"Sets forth his own aims in writing for children and laments
'slice of life' and chaos in children's literature. Maintains that
children like good plots, logic, and clarity, and that they
have a concern for 'so-called eternal questions.'"

— An Annotated Listing of Criticism
by Linnea Hendrickson

"She returned the smile, then looked across the room to
her youngest brother, Charles Wallace, and to their father,
who were deep in concentration, bent over the model
they were building of a tesseract: the square squared,
and squared again: a construction of the dimension of time."

— A Swiftly Tilting Planet,
by Madeleine L'Engle

Cover of 'A Swiftly Tilting Planet' and picture of tesseract

For "the dimension of time," see A Fold in TimeTime Fold,
and Diamond Theory in 1937

A Swiftly Tilting Planet  is a fantasy for children 
set partly in Vespugia, a fictional country bordered by
Chile and Argentina.

Ibid.

The pen's point:

Wm. F. Buckley as Archimedes, moving the world with a giant pen as lever. The pen's point is applied to southern South America.
John Trever, Albuquerque Journal, 2/29/08

Note the figure on the cover of National Review  above —

A related figure from Pentagram Design

See, more generally,  Isaac Singer  in this  journal.

Tuesday, January 9, 2018

Koen Thas and Quantum Theory

Filed under: General — Tags: — m759 @ 9:23 AM

'General Quantum Theory,' by Koen Thas, Dec. 13, 2017, preprint

This post supplies some background for earlier posts tagged
Quantum Tesseract Theorem.

Monday, January 8, 2018

Raiders of the Lost Theorem

Filed under: General,Geometry — Tags: — m759 @ 11:15 PM
 

The Quantum Tesseract Theorem 

 


 

Raiders —

A Wrinkle in Time
starring Storm Reid,
Reese Witherspoon,
Oprah Winfrey &
Mindy Kaling

 

Time Magazine  December 25, 2017 – January 1, 2018

Thursday, December 28, 2017

Rocky Start

Filed under: General — m759 @ 9:11 PM

The above prose suggests a musical alternative to the Dec. 21
Camazotz song in the posts tagged Quantum Tesseract Theorem . . .

 

Saturday, December 23, 2017

Search Result

Filed under: General — m759 @ 9:29 PM

The Right Stuff

Filed under: G-Notes,General,Geometry — Tags: — m759 @ 1:12 PM

A figure related to the general connecting theorem  of Koen Thas —

Anticommuting Dirac matrices as spreads of projective lines

Ron Shaw on the 15 lines of the classical generalized quadrangle W(2), a general linear complex in PG(3,2)

See also posts tagged Dirac and Geometry in this  journal.

Those who prefer narrative to mathematics may, if they so fancy, call
the above Thas connecting theorem a "quantum tesseract theorem ."

The Patterning

Filed under: General — Tags: — m759 @ 12:25 PM

See a Log24 search for "Patterning Windows."

Related material (Click for context) —

.

IT Girl (for Sweet Home Alabama)

Filed under: General — Tags: — m759 @ 3:35 AM

Friday, December 22, 2017

IT

Filed under: General,Geometry — Tags: — m759 @ 4:08 PM

Movie marquee on Camazotz, from the 2003 film of 'A Wrinkle in Time'

From a Log24 post of October 10, 2017

Koen Thas, 'Unextendible Mututally Unbiased Bases' (Sept. 2016)

Related material from May 25, 2016 —

Thursday, December 21, 2017

Wrinkles

Filed under: General — Tags: — m759 @ 1:00 PM

TIME magazine, issue of December 25th, 2017 —

" In 2003, Hand worked with Disney to produce a made-for-TV movie.
Thanks to budget constraints, among other issues, the adaptation
turned out bland and uninspiring. It disappointed audiences,
L’Engle and Hand. 'This is not the dream,' Hand recalls telling herself.
'I’m sure there were people at Disney that wished I would go away.' "

Not the dream?  It was, however, the nightmare, presenting very well
the encounter in Camazotz of Charles Wallace with the Tempter.

From a trailer for the latest version —

Detail:

From the 1962 book —

"There's something phoney in the whole setup, Meg thought.
There is definitely something rotten in the state of Camazotz."

Song adapted from a 1960 musical —

"In short, there's simply not
A more congenial spot
For happy-ever-aftering
Than here in Camazotz!"

Thursday, October 19, 2017

Design Grammar***

Filed under: G-Notes,General,Geometry — m759 @ 10:22 PM

The elementary shapes at the top of the figure below mirror
the looking-glass property  of the classical Lo Shu square.

The nine shapes at top left* and their looking-glass reflection
illustrate the looking-glass reflection relating two orthogonal
Latin squares over the three digits of modulo-three arithmetic.

Combining these two orthogonal Latin squares,** we have a
representation in base three of the numbers from 0 to 8.

Adding 1 to each of these numbers yields the Lo Shu square.

* The array at top left is from the cover of
Wonder Years:
Werkplaats Typografie 1998-2008
.

** A well-known construction.

*** For other instances of what might be
called "design grammar" in combinatorics,
see a slide presentation by Robin Wilson.
No reference to the work of Chomsky is
intended.

Saturday, September 23, 2017

The Turn of the Frame

Filed under: General,Geometry — Tags: , — m759 @ 2:19 AM

"With respect to the story's content, the frame thus acts
both as an inclusion of the exterior and as an exclusion
of the interior: it is a perturbation of the outside at the
very core of the story's inside, and as such, it is a blurring
of the very difference between inside and outside."

— Shoshana Felman on a Henry James story, p. 123 in
"Turning the Screw of Interpretation,"
Yale French Studies  No. 55/56 (1977), pp. 94-207.
Published by Yale University Press.

See also the previous post and The Galois Tesseract.

Sunday, August 27, 2017

Black Well

Filed under: General,Geometry — Tags: — m759 @ 12:00 PM

The "Black" of the title refers to the previous post.
For the "Well," see Hexagram 48.

Related material —

The Galois Tesseract and, more generally, Binary Coordinate Systems.

Saturday, August 26, 2017

Aesthetic Distance

Filed under: General,Geometry — m759 @ 7:59 PM

Naive readers may suppose that this sort of thing is 
related to what has been dubbed "geometric group theory."

It is not. See posts now tagged Aesthetic Distance.

Sunday, July 23, 2017

The Partitioned Self

Filed under: General — m759 @ 6:00 AM

Jung's self-symbol

http://www.log24.com/log/pix10A/100615-JungImago.gif

A meditation on Jung's self-symbol

Tuesday, July 11, 2017

Dialogue from Plato’s Cave

Filed under: General — Tags: — m759 @ 10:15 AM

At  scifi.stackexchange.com

Why was the Cosmic Cube named the Tesseract 
in the Marvel movie series? Is there any specific reason 
for the name change? According to me, Cosmic Cube
seems a nice and cooler name.

— Asked March 14, 2013, by Dhwaneet Bhatt
    
At least it wasn't called 'The AllSpark.' 
It's not out of the realm of possibility. 

— Solemnity, March 14, 2013

Saturday, June 3, 2017

Expanding the Spielraum (Continued*)

Filed under: General,Geometry — Tags: — m759 @ 1:13 PM

Or:  The Square

"What we do may be small, but it has
 a certain character of permanence."
— G. H. Hardy

* See Expanding the Spielraum in this journal.

Tuesday, May 23, 2017

Pursued by a Biplane

Filed under: General,Geometry — Tags: — m759 @ 9:41 PM

The Galois Tesseract as a biplane —

Saturday, May 20, 2017

The Ludicrous Extreme

Filed under: General,Geometry — Tags: — m759 @ 1:04 AM

From a review of the 2016 film "Arrival"

"A seemingly off-hand reference to Abbott and Costello
is our gateway. In a movie as generally humorless as Arrival,
the jokes mean something. Ironically, it is Donnelly, not Banks,
who initiates the joke, naming the verbally inexpressive
Heptapod aliens after the loquacious Classical Hollywood
comedians. The squid-like aliens communicate via those beautiful,
cryptic images. Those signs, when thoroughly comprehended,
open the perceiver to a nonlinear conception of time; this is
Sapir-Whorf taken to the ludicrous extreme."

Jordan Brower in the Los Angeles Review of Books

Further on in the review —

"Banks doesn’t fully understand the alien language, but she
knows it well enough to get by. This realization emerges
most evidently when Banks enters the alien ship and, floating
alongside Costello, converses with it in their picture-language.
She asks where Abbott is, and it responds — as presented
in subtitling — that Abbott 'is death process.'
'Death process' — dying — is not idiomatic English, and what
we see, written for us, is not a perfect translation but a
rendering of Banks’s understanding. This, it seems to me, is a
crucial moment marking the hard limit of a human mind,
working within the confines of human language to understand
an ultimately intractable xenolinguistic system."

For what may seem like an intractable xenolinguistic system to
those whose experience of mathematics is limited to portrayals
by Hollywood, see the previous post —

van Lint and Wilson Meet the Galois Tesseract.

The death process of van Lint occurred on Sept. 28, 2004.

See this journal on that date

Tuesday, May 2, 2017

Image Albums

Filed under: General,Geometry — Tags: — m759 @ 1:05 PM

Pinterest boards uploaded to the new m759.net/piwigo

Diamond Theorem 

Diamond Theorem Correlation

Miracle Octad Generator

The Eightfold Cube

Six-Set Geometry

Diamond Theory Cover

Update of May 2 —

Four-Color Decomposition

Binary Galois Spaces

The Galois Tesseract

Update of May 3 —

Desargues via Galois

The Tetrahedral Model

Solomon's Cube

Update of May 8 —

Art Space board created at Pinterest

Saturday, March 25, 2017

Twin Pillars of Symmetry

Filed under: General,Geometry — Tags: — m759 @ 1:00 PM

The phrase "twin pillars" in a New York Times  Fashion & Style
article today suggests a look at another pair of pillars —

This pair, from the realm of memory, history, and geometry disparaged
by the late painter Mark Rothko, might be viewed by Rothko
as  "parodies of ideas (which are ghosts)." (See the previous post.)

For a relationship between a 3-dimensional simplex and the {4, 3, 3},
see my note from May 21, 2014, on the tetrahedron and the tesseract.

Sunday, March 19, 2017

Norwegian Sermon

Filed under: General — m759 @ 11:30 AM

"And the Führer digs for trinkets in the desert."

See also the previous post.

Saturday, December 10, 2016

Folk Etymology

Images from Burkard Polster's Geometrical Picture Book

See as well in this journal the large  Desargues configuration, with
15 points and 20 lines instead of 10 points and 10 lines as above.

Exercise:  Can the large Desargues configuration be formed
by adding 5 points and 10 lines to the above Polster model
of the small configuration in such a way as to preserve
the small-configuration model's striking symmetry?  
(Note: The related figure below from May 21, 2014, is not
necessarily very helpful. Try the Wolfram Demonstrations
model
, which requires a free player download.)

Labeling the Tetrahedral Model (Click to enlarge) —

Related folk etymology (see point a  above) —

Related literature —

The concept  of "fire in the center" at The New Yorker , 
issue dated December 12, 2016, on pages 38-39 in the
poem by Marsha de la O titled "A Natural History of Light."

Cézanne's Greetings.

Friday, December 9, 2016

Snow Dance

Filed under: General,Geometry — Tags: — m759 @ 9:00 AM

See Ballet Blanc  in this journal.

For a darker perspective, click on the image below.

IMAGE- Detail of large 'Search for the Lost Tesseract' image with Amy Adams, Richard Zanuck, 'snowflake' structure, and white gloves

See also Cartier in The Hexagon of Opposition.

Happy birthday to Kirk Douglas.

Kirk Douglas in 'Diamonds'

Wednesday, October 5, 2016

Sources

Filed under: General,Geometry — Tags: , — m759 @ 9:00 AM

From a Google image search yesterday

Sources (left to right, top to bottom) —

Math Guy (July 16, 2014)
The Galois Tesseract (Sept. 1, 2011)
The Full Force of Roman Law (April 21, 2014)
A Great Moonshine (Sept. 25, 2015)
A Point of Identity (August 8, 2016)
Pascal via Curtis (April 6, 2013)
Correspondences (August 6, 2011)
Symmetric Generation (Sept. 21, 2011)

Tuesday, August 16, 2016

Midnight Narrative

Filed under: General,Geometry — m759 @ 12:00 AM

The images in the previous post do not lend themselves
to any straightforward narrative. Two portions of the
large image search are, however, suggestive —

 
Boulez and Boole      and

 

Cross and Boolean lattice.

The improvised cross in the second pair of images
is perhaps being wielded to counteract the
Boole of the first pair of images. See the heading
of the webpage that is the source of the lattice
diagram toward which the cross is directed —

Update of 10 am on August 16, 2016 —

See also Atiyah on the theology of 
(Boolean) algebra vs. (Galois) geometry:

Friday, July 15, 2016

Autistic Enchantment*

Filed under: General,Geometry — m759 @ 10:29 AM

Robert Nye, author of the novel Falstaffreportedly died
at 77 on July 2, 2016.

Harvey D. Heinz, expert on magic squares, cubes,
tesseracts, etc., reportedly died at 82 on July 6, 2013.

In memoriam —

From the date of Nye's death:

From Nye's book:

From the date of Heinz's death:

* See also a search for the title in this journal.

Wednesday, May 25, 2016

Framework

Filed under: General,Geometry — Tags: , — m759 @ 12:00 PM

"Studies of spin-½ theories in the framework of projective geometry
have been undertaken before." — Y. Jack Ng  and H. van Dam
February 20, 2009

For one such framework,* see posts from that same date 
four years earlier — February 20, 2005.

* A 4×4 array. See the 19771978, and 1986 versions by 
Steven H. Cullinane,   the 1987 version by R. T. Curtis, and
the 1988 Conway-Sloane version illustrated below —

Cullinane, 1977

IMAGE- Hypercube and 4x4 matrix from the 1976 'Diamond Theory' preprint, as excerpted in 'Computer Graphics and Art'

Cullinane, 1978

Cullinane, 1986

Curtis, 1987

Update of 10:42 PM ET on Sunday, June 19, 2016 —

The above images are precursors to

Conway and Sloane, 1988

Update of 10 AM ET Sept. 16, 2016 — The excerpt from the
1977 "Diamond Theory" article was added above.

Wednesday, May 11, 2016

Jewel of Odin

Filed under: General — m759 @ 1:00 PM

The tesseract in last night's post Game Theory
suggests a search in Log24 for "Jewel of Odin."

See also Trinkets.

Tuesday, May 10, 2016

Game Theory

Filed under: General — Tags: — m759 @ 11:00 PM

The following passage appeared in this journal
on the night of May 23-24, 2015.

IMAGE- A fictional vision of resurrection within a tesseract

The afternoon  of May 23, 2015, was significant
for devotees of mathematics and narrative.

Monday, April 18, 2016

The Philosopher’s Apprentice…

Filed under: General — m759 @ 3:21 PM

is a novel by James Morrow reviewed in The New York Times
on March 23, 2008:

"Morrow’s inventiveness is beguiling, as are his delight
in Western philosophy and his concern for the sorry state
of the world. Yet there’s also something comic-bookish
about his novel…."

Siddhartha Deb

"Something comic-bookish" 
in memory of Albert Einstein,
who reportedly died on this date
in 1955 —

Saturday, April 16, 2016

Matinee (continued)

Filed under: General — m759 @ 2:15 PM

Today is Kelli O'Hara's last Saturday matinee in "The King and I."

A show that some may prefer —

Related to the plot of Dante's film

"…it would be quite a long walk
for him if he had to walk straight across."

The image “http://www.log24.com/log/pix07A/070831-Ant1.gif” cannot be displayed, because it contains errors.

Swiftly Mrs. Who brought her hands… together.

"Now, you see," Mrs. Whatsit said,
"he would be  there, without that long trip.
That is how we travel."

The image “http://www.log24.com/log/pix07A/070831-Ant2.gif” cannot be displayed, because it contains errors.

– A Wrinkle in Time , Chapter 5, "The Tesseract"

Monday, February 22, 2016

Schoolgirl Problems…

Filed under: General — m759 @ 10:10 AM

and versions of "Both Sides Now"

See a New York Times  version of "Both Sides Now."

I prefer a version by Umberto Eco.

Related material for storytellers and the Church of Synchronology

This journal on the date of the above shooting script, 03/19/15.

Friday, January 29, 2016

Excellent Adventure*

Filed under: General — Tags: — m759 @ 9:29 PM

(Continued from Dec. 9, 2013)

"…it would be quite a long walk
for him if he had to walk straight across."

The image “http://www.log24.com/log/pix07A/070831-Ant1.gif” cannot be displayed, because it contains errors.

Swiftly Mrs. Who brought her hands… together.

"Now, you see," Mrs. Whatsit said,
"he would be  there, without that long trip.
That is how we travel."

The image “http://www.log24.com/log/pix07A/070831-Ant2.gif” cannot be displayed, because it contains errors.

– A Wrinkle in Time 
Chapter 5, "The Tesseract"

From a media weblog yesterday, a quote from the video below —

"At 12:03 PM Eastern Standard Time, January 12th, 2016…."

This  weblog on the previous day (January 11th, 2016) —

"There is  such a thing as harmonic analysis of switching functions."

— Saying adapted from a young-adult novel

* For some backstory, see a Caltech page.

Thursday, January 14, 2016

Raiders of the Lost Box

Filed under: General — m759 @ 10:30 AM

See Triumph of the Will and Box of Nothing

"And the Führer digs for trinkets in the desert."

Monday, January 11, 2016

Space Oddity

Filed under: General,Geometry — Tags: — m759 @ 3:15 PM

It is an odd fact that the close relationship between some
small Galois spaces and small Boolean spaces has gone 
unremarked by mathematicians.  

A Google search today for "Galois spaces" + "Boolean spaces"
yielded, apart from merely terminological sources, only some
introductory material I have put on the Web myself. 

Some more sophisticated searches, however led to a few
documents from the years 1971 – 1981 …

"Harmonic Analysis of Switching Functions" ,
by Robert J. Lechner, Ch. 5 in A. Mukhopadhyay, editor,
Recent Developments in Switching Theory , Academic Press, 1971.

"Galois Switching Functions and Their Applications,"
by B. Benjauthrit and I. S. Reed,
JPL Deep Space Network Progress Report 42-27 , 1975

D.K. Pradhan, “A Theory of Galois Switching Functions,”
IEEE Trans. Computers , vol. 27, no. 3, pp. 239-249, Mar. 1978

"Switching functions constructed by Galois extension fields,"
by Iwaro Takahashi, Information and Control ,
Volume 48, Issue 2, pp. 95–108, February 1981

An illustration from the Lechner paper above —

"There is  such a thing as harmonic analysis of switching functions."

— Saying adapted from a young-adult novel

Friday, January 8, 2016

Triumph of the Will

Filed under: General — Tags: — m759 @ 12:00 PM

"And the Führer digs for trinkets in the desert."

Monday, October 12, 2015

Ex Tenebris

Filed under: General — m759 @ 4:40 AM
 
“By groping toward the light
 we are made to realize
 how deep the darkness
 is around us.”
 
— Arthur Koestler,
   The Call Girls: A Tragi-Comedy,
   Random House, 1973,
   page 118

"The Tesseract is where it belongs: out of our reach."

 — Samuel L. Jackson as Nick Fury,
      quoted here on Epiphany 2013

Earlier (See Jan. 27, 2012)

"And the Führer digs for trinkets in the desert."

Monday, September 28, 2015

Hypercube Structure

Filed under: General,Geometry — m759 @ 1:01 AM

Click to enlarge:

Two views of tesseracts as 4D vector spaces over GF(2)

For the hypercube as a vector space over the two-element field GF(2),
see a search in this journal for Hypercube + Vector + Space .

For connections with the related symplectic geometry, see Symplectic
in this journal and Notes on Groups and Geometry, 1978-1986.

For the above 1976 hypercube (or tesseract ), see "Diamond Theory,"
by Steven H. Cullinane, Computer Graphics and Art , Vol. 2, No. 1,
Feb. 1977, pp. 5-7.

Friday, June 19, 2015

Footnote

Filed under: General,Geometry — m759 @ 9:29 PM

There is  such a thing as geometry.*

* Proposition adapted from A Wrinkle in Time , by Madeleine L'Engle.

Tuesday, June 9, 2015

Colorful Song

Filed under: General,Geometry — Tags: — m759 @ 8:40 PM

For geeks* —

Domain, Domain on the Range , "

where Domain = the Galois tesseract  and
Range = the four-element Galois field.

This post was suggested by the previous post,
by a Log24 search for Knight + Move, and by
the phrase "discouraging words" found in that search.

* A term from the 1947 film "Nightmare Alley."

Saturday, May 23, 2015

Group

Filed under: General — Tags: — m759 @ 11:30 PM

On the artist Hilma af Klint (1862-1944):

"She belonged to a group called 'The Five'…."

Related material — Real Life (Log24, May 20, 2015).

From that post:

IMAGE- Immersion in a fictional vision of resurrection within a tesseract

Wednesday, May 20, 2015

Real Life

Filed under: General — Tags: — m759 @ 12:12 AM

From Amazon.com —

From the Milwaukee Journal Sentinel  Tuesday afternoon —

A 46-year-old Jesuit priest who was a Marquette University
assistant professor of theology collapsed on campus
Tuesday morning and died, President Michael Lovell
announced to the campus community in an email.

"Rev. Lúcás (Yiu Sing Luke) Chan, S.J., died after
collapsing this morning in Marquette Hall. Just last Sunday,
Father Chan offered the invocation at the Klingler College
of Arts and Sciences graduation ceremony."

Synchronicity check

From this journal on the above publication date of
Chan's book — Sept. 20, 2012 —

IMAGE- Immersion in a fictional vision of resurrection within a tesseract

From a Log24 post on the preceding day, Sept. 19, 2012 —

The Game in the Ship cannot be approached as a job,
a vocation, a career, or a recreation. To the contrary,
it is Life and Death itself at work there. In the Inner Game,
we call the Game Dhum Welur , the Mind of God."

 — The Gameplayers of Zan

Thursday, March 26, 2015

The Möbius Hypercube

Filed under: General,Geometry — Tags: , — m759 @ 12:31 AM

The incidences of points and planes in the
Möbius 8 configuration (8 points and 8 planes,
with 4 points on each plane and 4 planes on each point),
were described by Coxeter in a 1950 paper.* 
A table from Monday's post summarizes Coxeter's
remarks, which described the incidences in
spatial terms, with the points and planes as the vertices
and face-planes of two mutually inscribed tetrahedra —

Monday's post, "Gallucci's Möbius Configuration,"
may not be completely intelligible unless one notices
that Coxeter has drawn some of the intersections in his 
Fig. 24, a schematic representation of the point-plane
incidences, as dotless, and some as hollow dots.  The figure,
"Gallucci's version of Möbius's 84," is shown below.
The hollow dots, representing the 8 points  (as opposed
to the 8 planes ) of the configuration, are highlighted in blue.

Here a plane  (represented by a dotless intersection) contains
the four points  that are represented in the square array as lying
in the same row or same column as the plane. 

The above Möbius incidences appear also much earlier in
Coxeter's paper, in figures 6 and 5, where they are shown
as describing the structure of a hypercube. 

In figures 6 and 5, the dotless intersections representing
planes have been replaced by solid dots. The hollow dots
have again been highlighted in blue.

Figures 6 and 5 demonstrate the fact that adjacency in the set of
16 vertices of a hypercube is isomorphic to adjacency in the set
of 16 subsquares of a square 4×4 array, provided that opposite
sides of the array are identified, as in Fig. 6. The digits in 
Coxeter's labels above may be viewed as naming the positions 
of the 1's in (0,1) vectors (x4, x3, x2, x1) over the two-element
Galois field.  In that context, the 4×4 array may be called, instead
of a Möbius hypercube , a Galois tesseract .

*  "Self-Dual Configurations and Regular Graphs," 
    Bulletin of the American Mathematical Society,
    Vol. 56 (1950), pp. 413-455

The subscripts' usual 1-2-3-4 order is reversed as a reminder
    that such a vector may be viewed as labeling a binary number 
    from 0  through 15, or alternately as labeling a polynomial in
    the 16-element Galois field GF(24).  See the Log24 post
     Vector Addition in a Finite Field (Jan. 5, 2013).

Tuesday, March 24, 2015

Hirzebruch

Filed under: General,Geometry — m759 @ 1:00 PM

(Continued from July 16, 2014.)

Some background from Wikipedia:

"Friedrich Ernst Peter Hirzebruch  ForMemRS[2] 
(17 October 1927 – 27 May 2012)
was a 
German mathematician, working in the fields of topology
complex manifolds and algebraic geometry, and a leading figure
in his generation. He has been described as 'the most important
mathematician in Germany of the postwar period.'

[3][4][5][6][7][8][9][10][11]"

A search for citations of the A. E. Brouwer paper in
the previous post yields a quotation from the preface
to the third ("2013") edition of Wolfgang Ebeling's
Lattices and Codes: A Course Partially Based
on Lectures by Friedrich Hirzebruch
, a book
reportedly published on September 19, 2012 —

"Sadly, on May 27 this year, Friedrich Hirzebruch,
on whose lectures this book is partially based,
passed away. I would like to express my gratitude
and my admiration by dedicating this book
to his memory.

Hannover, July 2012               Wolfgang Ebeling "

(Prof. Dr. Wolfgang Ebeling, Institute of Algebraic Geometry,
Leibniz Universität Hannover, Germany)

Also sadly

Monday, March 23, 2015

Gallucci’s Möbius Configuration

Filed under: General,Geometry — Tags: — m759 @ 12:05 PM

From H. S. M. Coxeter's 1950 paper
"Self-Dual Configurations and Regular Graphs," 
a 4×4 array and a more perspicuous rearrangement—

(Click image to enlarge.) 

The above rearrangement brings Coxeter's remarks into accord
with the webpage The Galois Tesseract.

Update of Thursday, March 26, 2015 —

For an explanation of Coxeter's Fig. 24, see Thursday's later
post titled "The Möbius Hypercube."

Monday, January 26, 2015

Savior for Atheists…

Filed under: General,Geometry — m759 @ 5:26 PM

Continued from June 17, 2013
(
John Baez as a savior for atheists):

As an atheists-savior, I prefer Galois

The geometry underlying a figure that John Baez
posted four days ago, "A Hypercube of Bits," is
Galois  geometry —

See The Galois Tesseract and an earlier
figure from Log24 on May 21, 2007:

IMAGE- Tesseract from Log24 on May 21, 2007

For the genesis of the figure,
see The Geometry of Logic.

Friday, December 5, 2014

Wittgenstein’s Picture

Filed under: General,Geometry — m759 @ 12:00 PM

From Zettel  (repunctuated for clarity):

249. « Nichts leichter, als sich einen 4-dimensionalen Würfel
vorstellen! Er schaut so aus… »

"Nothing easier than to imagine a 4-dimensional cube!
It looks like this… 

[Here the editor supplied a picture of a 4-dimensional cube
that was omitted by Wittgenstein in the original.]

« Aber das meine ich nicht, ich meine etwas wie…

"But I don't mean that, I mean something like…

…nur mit 4 Ausdehnungen! » 

but with four dimensions!

« Aber das ist nicht, was ich dir gezeigt habe,
eben etwas wie…

"But isn't  what I showed you like

…nur mit 4 Ausdehnungen? » 

…only with four dimensions?"

« Nein; das meine  ich nicht! » 

"No, I don't mean  that!"

« Was aber meine ich? Was ist mein Bild?
Nun der 4-dimensionale Würfel, wie du ihn gezeichnet hast,
ist es nicht ! Ich habe jetzt als Bild nur die Worte  und
die Ablehnung alles dessen, was du mir zeigen kanst. »

"But what do I mean? What is my picture?
Well, it is not  the four-dimensional cube
as you drew it. I have now for a picture only
the words  and my rejection of anything
you can show me."

"Here's your damn Bild , Ludwig —"

Context: The Galois Tesseract.

Friday, November 7, 2014

The Crosswicks Curse…

Filed under: General — m759 @ 7:00 AM

Continues.

There is  such a thing as an MBTI Tesseract.

See a thread at http://www.typologycentral.com/forums/
from August 17 and 18, 2010.

See also this journal on those dates: The Kermode Game.

Friday, October 31, 2014

Structure

Filed under: General,Geometry — m759 @ 3:00 AM

On Devil’s Night

Introducing a group of 322,560 affine transformations of Dürer’s ‘Magic’ Square

IMAGE- Introduction to 322,560 Affine Transformations of Dürer's 'Magic' Square

The four vector-space substructures of digits in 1st, 2nd, 3rd, 4th place,
together with the diamond theorem, indicate that Dürer’s square “minus one”
can be transformed by permutations of rows, columns, and quadrants to a
square with (decimal) digits in the usual numerical order, increasing from
top left to bottom right. Such permutations form a group of order 322,560.

(Continued from Vector Addition in a Finite Field, Twelfth Night, 2013.)

Thursday, September 11, 2014

Portals

Filed under: General — Tags: — m759 @ 10:28 PM

Part I

Image- Josefine Lyche's work (with 1986 figures by Cullinane) in a 2009 exhibition in Oslo

Part II

Part III

Monday, August 4, 2014

The Omega Portal

Filed under: General — m759 @ 11:00 AM

Version from “The Avengers” (2012) —

Version from Josefine Lyche (2009) —

Image- Josefine Lyche work (with 1986 figures by Cullinane) in a 2009 exhibition in Oslo

See also this journal on the date that the above Avengers  video was uploaded.

A Wrinkle in Space

Filed under: General,Geometry — Tags: , — m759 @ 10:30 AM

"There is  such a thing as a tesseract." — Madeleine L'Engle

An approach via the Omega Matrix:

http://www.log24.com/log/pix10A/100619-TesseractAnd4x4.gif

See, too, Rosenhain and Göpel as The Shadow Guests .

Thursday, July 17, 2014

Paradigm Shift:

Filed under: General,Geometry — Tags: — m759 @ 11:01 AM
 

Continuous Euclidean space to discrete Galois space*

Euclidean space:

Point, line, square, cube, tesseract

From a page by Bryan Clair

Counting symmetries in Euclidean space:

Galois space:

Image-- examples from Galois affine geometry

Counting symmetries of  Galois space:
IMAGE - The Diamond Theorem

The reason for these graphic symmetries in affine Galois space —

symmetries of the underlying projective Galois space:

* For related remarks, see posts of May 26-28, 2012.

Friday, July 11, 2014

Back to 1955

Filed under: General — m759 @ 10:00 AM

Nick Fury takes the Tesseract

… which travels back to 1955
(see The Call Girls, Nov. 3, 2013)…

IMAGE- Cover design by Robert Flynn of 'The Armed Vision,' a 1955 Vintage paperback by Stanley Edgar Hyman

Above: A 1955 cover design by Robert Flynn.

Images from December 1955…

… and a fictional image imagined in an earlier year:

Wednesday, May 21, 2014

The Tetrahedral Model of PG(3,2)

Filed under: General,Geometry — Tags: , — m759 @ 10:15 PM

The page of Whitehead linked to this morning
suggests a review of Polster's tetrahedral model
of the finite projective 3-space PG(3,2) over the
two-element Galois field GF(2).

The above passage from Whitehead's 1906 book suggests
that the tetrahedral model may be older than Polster thinks.

Shown at right below is a correspondence between Whitehead's
version of the tetrahedral model and my own square  model,
based on the 4×4 array I call the Galois tesseract  (at left below).

(Click to enlarge.)

Thursday, May 8, 2014

Wrinkles in Time

Filed under: General — Tags: — m759 @ 2:25 PM

Rivka Galchen, in a piece mentioned here in June 2010

On Borges:  Imagining the Unwritten Book 

"Think of it this way: there is a vast unwritten book that the heart reacts to, that it races and skips in response to, that it believes in. But it’s the heart’s belief in that vast unwritten book that brought the book into existence; what appears to be exclusively a response (the heart responding to the book) is, in fact, also a conjuring (the heart inventing the book to which it so desperately wishes to respond)."

Related fictions

Galchen's "The Region of Unlikeness" (New Yorker , March 24, 2008)

Ted Chiang's "Story of Your Life." A film adaptation is to star Amy Adams.

… and non-fiction

"There is  such a thing as a 4-set." — January 31, 2012

Friday, March 14, 2014

The Search for Charles Wallace

Filed under: General — Tags: , — m759 @ 2:19 PM

The search in the previous post for the source of a quotation from Poincaré yielded, as a serendipitous benefit, information on an interesting psychoanalyst named Wilfred Bion (see the Poincaré  quotation at a webpage on Bion). This in turn suggested a search for the source of the name of author Madeleine L'Engle's son Bion, who may have partly inspired L'Engle's fictional character Charles Wallace.  Cynthia Zarin wrote about Bion in The New Yorker  of April 12, 2004 that

"According to the family, he is the person for whom L’Engle’s insistence on blurring fiction and reality had the most disastrous consequences."

Also from that article, material related to the name Bion and to what this journal has called "the Crosswicks Curse"*—

"Madeleine L’Engle Camp was born in 1918 in New York City, the only child of Madeleine Hall Barnett, of Jacksonville, Florida, and Charles Wadsworth Camp, a Princeton man and First World War veteran, whose family had a big country place in New Jersey, called Crosswicks. In Jacksonville society, the Barnett family was legendary: Madeleine’s grandfather, Bion Barnett, the chairman of the board of Jacksonville’s Barnett Bank, had run off with a woman to the South of France, leaving behind a note on the mantel. Her grandmother, Caroline Hallows L’Engle, never recovered from the blow. ….

… The summer after Hugh and Madeleine were married, they bought a dilapidated farmhouse in Goshen, in northwest Connecticut. Josephine, born in 1947, was three years old when they moved permanently to the house, which they called Crosswicks. Bion was born just over a year later."

* "There is  such a thing as a tesseract."

Tuesday, March 11, 2014

Depth

Filed under: General,Geometry — Tags: , — m759 @ 11:16 AM

"… this notion of ‘depth’ is an elusive one
even for a mathematician who can recognize it…."

— G. H. Hardy,  A Mathematician's Apology

Part I:  An Inch Deep

IMAGE- Catch-phrase 'a mile wide and an inch deep' in mathematics education

Part II:  An Inch Wide

See a search for "square inch space" in this journal.

Diamond Theory version of 'The Square Inch Space' with yin-yang symbol for comparison

 

See also recent posts with the tag depth.

Sunday, March 2, 2014

Sermon

Filed under: General,Geometry — Tags: — m759 @ 11:00 AM

Raiders of the Lost  (Continued)

"Socrates: They say that the soul of man is immortal…."

From August 16, 2012

In the geometry of Plato illustrated below,
"the figure of eight [square] feet" is not ,  at this point
in the dialogue, the diamond in Jowett's picture.

An 1892 figure by Jowett illustrating Plato's Meno

A more correct version, from hermes-press.com —

Socrates: He only guesses that because the square is double, the line is double.Meno: True.

 

Socrates: Observe him while he recalls the steps in regular order. (To the Boy.) Tell me, boy, do you assert that a double space comes from a double line? Remember that I am not speaking of an oblong, but of a figure equal every way, and twice the size of this-that is to say of eight feet; and I want to know whether you still say that a double square comes from double line?

[Boy] Yes.

Socrates: But does not this line (AB) become doubled if we add another such line here (BJ is added)?

[Boy] Certainly.

Socrates: And four such lines [AJ, JK, KL, LA] will make a space containing eight feet?

[Boy] Yes.

Socrates: Let us draw such a figure: (adding DL, LK, and JK). Would you not say that this is the figure of eight feet?

[Boy] Yes.

Socrates: And are there not these four squares in the figure, each of which is equal to the figure of four feet? (Socrates draws in CM and CN)

[Boy] True.

Socrates: And is not that four times four?

[Boy] Certainly.

Socrates: And four times is not double?

[Boy] No, indeed.

Socrates: But how much?

[Boy] Four times as much.

Socrates: Therefore the double line, boy, has given a space, not twice, but four times as much.

[Boy] True.

Socrates: Four times four are sixteen— are they not?

[Boy] Yes.

As noted in the 2012 post, the diagram of greater interest is
Jowett's incorrect  version rather than the more correct version
shown above. This is because the 1892 version inadvertently
illustrates a tesseract:

A 4×4 square version, by Coxeter in 1950, of  a tesseract

This square version we may call the Galois  tesseract.

Thursday, February 27, 2014

The Crosswicks Curse

Filed under: General,Geometry — m759 @ 7:00 PM

(Continued)

"There is  such a thing as a tesseract."

— Saying from Crosswicks

IMAGE- From Dmitri Tymoczko's 'Geometry of Music,' Chopin and a tesseract

See also March 5, 2011.

Adapted from the above passage —

"So did L'Engle understand four-dimensional geometry?"

No and Yes.

Saturday, January 25, 2014

Rotatable Hypercube

Filed under: General — Tags: , — m759 @ 6:00 AM

The archived Java rotatable hypercube of
Harry J. Smith is no longer working.
For an excellent JavaScript  replacement,
see Pete Michaud's
http://petemichaud.github.io/4dhypercube/.

This JavaScript  version can easily be saved.

Friday, January 17, 2014

The 4×4 Relativity Problem

Filed under: General,Geometry — Tags: , , — m759 @ 11:00 PM

The sixteen-dot square array in yesterday’s noon post suggests
the following remarks.

“This is the relativity problem:  to fix objectively a class of
equivalent coordinatizations and to ascertain the group of
transformations S mediating between them.”

— Hermann Weyl, The Classical Groups ,
Princeton University Press, 1946, p. 16

The Galois tesseract  appeared in an early form in the journal
Computer Graphics and Art , Vol. 2, No. 1, February 1977—

IMAGE- Hypercube and 4x4 matrix from the 1976 'Diamond Theory' preprint, as excerpted in 'Computer Graphics and Art'

The 1977 matrix Q is echoed in the following from 2002—

IMAGE- Dolgachev and Keum, coordinatization of the 4x4 array in 'Birational Automorphisms of Quartic Hessian Surfaces,' AMS Transactions, 2002

A different representation of Cullinane’s 1977 square model of the
16-point affine geometry over the two-element Galois field GF(2)
is supplied by Conway and Sloane in Sphere Packings, Lattices and Groups   
(first published in 1988) :

IMAGE- The Galois tesseract as a four-dimensional vector space, from a diagram by Conway and Sloane in 'Sphere Packings, Lattices, and Groups'

Here a, b, c, d   are basis vectors in the vector 4-space over GF(2).
(For a 1979 version of this vector space, see AMS Abstract 79T-A37.)

See also a 2011 publication of the Mathematical Association of America —

From 'Beautiful Mathematics,' by Martin Erickson, an excerpt on the Cullinane diamond theorem (with source not mentioned)

Friday, December 20, 2013

For Emil Artin

Filed under: General,Geometry — Tags: , — m759 @ 12:00 PM

(On His Dies Natalis )

An Exceptional Isomorphism Between Geometric and
Combinatorial Steiner Triple Systems Underlies 
the Octads of the M24 Steiner System S(5, 8, 24).

This is asserted in an excerpt from… 

"The smallest non-rank 3 strongly regular graphs
​which satisfy the 4-vertex condition"
by Mikhail Klin, Mariusz Meszka, Sven Reichard, and Alex Rosa,
BAYREUTHER MATHEMATISCHE SCHRIFTEN 73 (2005), 152-212—

(Click for clearer image)

Note that Theorem 46 of Klin et al.  describes the role
of the Galois tesseract  in the Miracle Octad Generator
of R. T. Curtis (original 1976 version). The tesseract
(a 4×4 array) supplies the geometric  part of the above
exceptional geometric-combinatorial isomorphism.

Wednesday, December 18, 2013

A Hand for the Band

Filed under: General,Geometry — m759 @ 10:30 AM

"How about another hand for the band?
They work real hard for it.
The Cherokee Cowboys, ladies and gentlemen."

— Ray Price, video, "Danny Boy Mid 80's Live"

Other deathly hallows suggested by today's NY Times

Click the above image for posts from December 14.

That image mentions a death on August 5, 2005, in
"entertainment Mecca" Branson, Missouri.

Another note from August 5, 2005, reposted here
on Monday

IMAGE- Aug. 5, 2005- Galois tesseract, Shakespeherian Rag, Sir Alec Guinness

Happy birthday, Keith Richards.

Monday, December 16, 2013

Quartet

Filed under: General,Geometry — m759 @ 12:00 PM

IMAGE- Four quadrants of a Galois tesseract, and a figure from 'Lawrence of Arabia'

Happy Beethoven's Birthday.

Related material:  Abel 2005 and, more generally, Abel.

See also Visible Mathematics.

Sunday, December 15, 2013

Sermon

Filed under: General,Geometry — m759 @ 11:00 AM

Odin's Jewel

Jim Holt, the author of remarks in yesterday's
Saturday evening post

"It turns out that the Kyoto school of Buddhism
makes Heidegger seem like Rush Limbaugh—
it’s so rarified, I’ve never been able to
understand it at all. I’ve been knocking my head
against it for years."

Vanity Fair Daily , July 16, 2012

Backstory Odin + Jewel in this journal.

See also Odin on the Kyoto school —

For another version of Odin's jewel, see Log24
on the date— July 16, 2012— that Holt's Vanity Fair
remarks were published. Scroll to the bottom of the
"Mapping Problem continued" post for an instance of
the Galois tesseract —

IMAGE- The Galois tesseract as a four-dimensional vector space, from a diagram by Conway and Sloane in 'Sphere Packings, Lattices, and Groups'

Tuesday, December 10, 2013

Pink Champagne on Ice

Filed under: General — m759 @ 1:00 AM

The title refers to a post of April 26, 2009.

U. of California edition of Wittgenstein's 'Zettel'-- pink cover, white tesseract in background

Monday, December 9, 2013

Being There

Filed under: General — Tags: — m759 @ 9:16 PM

Or: The Naked Blackboard Jungle

"…it would be quite a long walk
for him if he had to walk straight across."

The image “http://www.log24.com/log/pix07A/070831-Ant1.gif” cannot be displayed, because it contains errors.

Swiftly Mrs. Who brought her hands… together.

"Now, you see," Mrs. Whatsit said,
"he would be  there, without that long trip.
That is how we travel."

The image “http://www.log24.com/log/pix07A/070831-Ant2.gif” cannot be displayed, because it contains errors.

– A Wrinkle in Time 
Chapter 5, "The Tesseract"

Related material: Machete Math and

Starring the late Eleanor Parker as Swiftly Mrs. Who.

Saturday, September 21, 2013

Geometric Incarnation

The  Kummer 166  configuration  is the configuration of sixteen
6-sets within a 4×4 square array of points in which each 6-set
is determined by one of the 16 points of the array and
consists of the 3 other points in that point's row and the
3 other points in that point's column.

See Configurations and Squares.

The Wikipedia article Kummer surface  uses a rather poetic
phrase* to describe the relationship of the 166 to a number
of other mathematical concepts — "geometric incarnation."

Geometric Incarnation in the Galois Tesseract

Related material from finitegeometry.org —

IMAGE- 4x4 Geometry: Rosenhain and Göpel Tetrads and the Kummer Configuration

* Apparently from David Lehavi on March 18, 2007, at Citizendium .

Monday, August 12, 2013

Form

Filed under: General,Geometry — Tags: — m759 @ 12:00 PM

The Galois tesseract  appeared in an early form in the journal
Computer Graphics and Art , Vol. 2, No. 1, February 1977—

IMAGE- Hypercube and 4x4 matrix from the 1976 'Diamond Theory' preprint, as excerpted in 'Computer Graphics and Art'

The Galois tesseract is the basis for a representation of the smallest 
projective 3-space, PG(3,2), that differs from the representation at
Wolfram Demonstrations Project. For the latter, see yesterday's post.

The tesseract representation underlies the diamond theorem, illustrated
below in its earliest form, also from the above February 1977 article—

IMAGE- Steven H. Cullinane, diamond theorem, from 'Diamond Theory,' Computer Graphics and Art, Vol. 2 No. 1, Feb. 1977, pp. 5-7

As noted in a more recent version, the group described by
the diamond theorem is also the group of the 35 square
patterns within the 1976 Miracle Octad Generator  (MOG) of
R. T. Curtis.

Tuesday, July 16, 2013

Space Itself

Filed under: General,Geometry — Tags: — m759 @ 10:18 AM

"How do you get young people excited
about space? How do you get them interested
not just in watching movies about space,
or in playing video games set in space
but in space itself?"

Megan Garber in The AtlanticAug. 16, 2012

One approach:

"There is  such a thing as a tesseract" and
Diamond Theory in 1937.

See, too, Baez in this journal.

Tuesday, July 9, 2013

Vril Chick

Filed under: General,Geometry — m759 @ 4:30 AM

Profile picture of "Jo Lyxe" (Josefine Lyche) at Vimeo

Profile picture for "Jo Lyxe" (Josefine Lyche) at Vimeo

Compare to an image of Vril muse Maria Orsitsch.

From the catalog of a current art exhibition
(25 May – 31 August, 2013) in Norway,
I DE LANGE NÆTTER —

Josefine Lyche
Born in 1973 in Bergen, Norway.
Lives and works in Oslo and Berlin.

Keywords (to help place my artwork in the
proper context): Aliens, affine geometry, affine
planes, affine spaces, automorphisms, binary
codes, block designs, classical groups, codes,
coding theory, collineations, combinatorial,
combinatorics, conjugacy classes, the Conwell
correspondence, correlations, Cullinane,
R. T. Curtis, design theory, the diamond theorem,
diamond theory, duads, duality, error correcting
codes, esoteric, exceptional groups,
extraterrestrials, finite fields, finite geometry, finite
groups, finite rings, Galois fields, generalized
quadrangles, generators, geometry, GF(2),
GF(4), the (24,12) Golay code, group actions,
group theory, Hadamard matrices, hypercube,
hyperplanes, hyperspace, incidence structures,
invariance, Karnaugh maps, Kirkman’s schoolgirls
problem, Latin squares, Leech lattice, linear
groups, linear spaces, linear transformations,
Magick, Mathieu groups, matrix theory, Meno,
Miracle Octad Generator, MOG, multiply transitive
groups, occultism, octahedron, the octahedral
group, Orsic, orthogonal arrays, outer automorphisms,
parallelisms, partial geometries,
permutation groups, PG(3,2), Plato, Platonic
solids, polarities, Polya-Burnside theorem, projective
geometry, projective planes, projective
spaces, projectivities, Pythagoras, reincarnation,
Reed-Muller codes, the relativity problem,
reverse engineering, sacred geometry, Singer
cycle, skew lines, Socrates, sporadic simple
groups, Steiner systems, Sylvester, symmetric,
symmetry, symplectic, synthemes, synthematic,
Theosophical Society tesseract, Tessla, transvections,
Venn diagrams, Vril society, Walsh
functions, Witt designs.

(See also the original catalog page.)

Clearly most of this (the non-highlighted parts) was taken
from my webpage Diamond Theory. I suppose I should be
flattered, but I am not thrilled to be associated with the
(apparently fictional) Vril Society.

For some background, see (for instance) 
Conspiracy Theories and Secret Societies for Dummies .

Friday, July 5, 2013

Mathematics and Narrative (continued)

Filed under: General,Geometry — Tags: , , — m759 @ 6:01 PM

Short Story — (Click image for some details.)

IMAGE- Andries Brouwer and the Galois Tesseract

Parts of a longer story —

The Galois Tesseract and Priority.

Sunday, June 23, 2013

Random Dudes

Filed under: General — m759 @ 10:00 PM

Here is the link to an MIT Scratch project from the above comment.

See also a comment by a Random Norwegian Dude:

For related art, see 
"4D AMBASSADOR (HYPERCUBE)" for Steven H. Cullinane
by the Norwegian artist Josefine Lyche.

Tuesday, June 4, 2013

Cover Acts

Filed under: General,Geometry — Tags: — m759 @ 11:00 AM

The Daily Princetonian  today:

IMAGE- 'How Jay White, a Neil Diamond cover act, duped Princeton'

A different cover act, discussed here  Saturday:

IMAGE- The diamond theorem affine group of order 322,560, published without acknowledgment of its source by the Mathematical Association of America in 2011

See also, in this journal, the Galois tesseract and the Crosswicks Curse.

"There is  such a thing as a tesseract." — Crosswicks saying

Tuesday, May 28, 2013

Codes

Filed under: General,Geometry — Tags: , , , — m759 @ 12:00 PM

The hypercube  model of the 4-space over the 2-element Galois field GF(2):

IMAGE- A hyperspace model of the 4D vector space over GF(2)

The phrase Galois tesseract  may be used to denote a different model
of the above 4-space: the 4×4 square.

MacWilliams and Sloane discussed the Miracle Octad Generator
(MOG) of R. T. Curtis further on in their book (see below), but did not
seem to realize in 1977 that the 4×4 structures within the MOG are
based on the Galois-tesseract model of the 4-space over GF(2).

IMAGE- Octads within the Curtis MOG, which uses a 4x4-array model of the 4D vector space over GF(2)

The thirty-five 4×4 structures within the MOG:

IMAGE- The 35 square patterns within the Curtis MOG

Curtis himself first described these 35 square MOG patterns
combinatorially, (as his title indicated) rather than
algebraically or geometrically:

IMAGE- R. T. Curtis's combinatorial construction of 4x4 patterns within the Miracle Octad Generator

A later book co-authored by Sloane, first published in 1988,
did  recognize the 4×4 MOG patterns as based on the 4×4
Galois-tesseract model.

Between the 1977 and 1988 Sloane books came the diamond theorem.

Update of May 29, 2013:

The Galois tesseract appeared in an early form in the journal
Computer Graphics and Art , Vol. 2, No. 1, February 1977
(the year the above MacWilliams-Sloane book was first published):

IMAGE- Hypercube and 4x4 matrix from the 1976 'Diamond Theory' preprint, as excerpted in 'Computer Graphics and Art'

Sunday, May 19, 2013

Sermon

Filed under: General,Geometry — Tags: — m759 @ 11:00 AM

Best vs. Bester

The previous post ended with a reference mentioning Rosenhain.

For a recent application of Rosenhain's work, see
Desargues via Rosenhain (April 1, 2013).

From the next day, April 2, 2013:

"The proof of Desargues' theorem of projective geometry
comes as close as a proof can to the Zen ideal.
It can be summarized in two words: 'I see!' "

– Gian-Carlo Rota in Indiscrete Thoughts (1997)

Also in that book, originally from a review in Advances in Mathematics ,
Vol. 84, Number 1, Nov. 1990, p. 136:
IMAGE- Rota's review of 'Sphere Packings, Lattices and Groups'-- in a word, 'best'

See, too, in the Conway-Sloane book, the Galois tesseract  
and, in this journal, Geometry for Jews and The Deceivers , by Bester.

Priority Claim

Filed under: General,Geometry — Tags: , , , — m759 @ 9:00 AM

From an arXiv preprint submitted July 18, 2011,
and last revised on March 11, 2013 (version 4):

"By our construction, this vector space is the dual
of our hypercube F24 built on I \ O9. The vector space
structure of the latter, to our knowledge, is first
mentioned by Curtis
in [Cur89]. Hence altogether
our proposition 2.3.4 gives a novel geometric
meaning in terms of Kummer geometry to the known
vector space structure on I \ O9."

[Cur89] reference:
 R. T. Curtis, "Further elementary techniques using
the miracle octad generator," Proc. Edinburgh
Math. Soc. 
32 (1989), 345-353 (received on
July 20, 1987).

— Anne Taormina and Katrin Wendland,
    "The overarching finite symmetry group of Kummer
      surfaces in the Mathieu group 24 ,"
     arXiv.org > hep-th > arXiv:1107.3834

"First mentioned by Curtis…."

No. I claim that to the best of my knowledge, the 
vector space structure was first mentioned by me,
Steven H. Cullinane, in an AMS abstract submitted
in October 1978, some nine years before the
Curtis article.

Update of the above paragraph on July 6, 2013—

No. The vector space structure was described by
(for instance) Peter J. Cameron in a 1976
Cambridge University Press book —
Parallelisms of Complete Designs .
See the proof of Theorem 3A.13 on pages 59 and 60.

The vector space structure as it occurs in a 4×4 array
of the sort that appears in the Curtis Miracle Octad
Generator may first have been pointed out by me,
Steven H. Cullinane,
 in an AMS abstract submitted in
October 1978, some nine years before the Curtis article.

See Notes on Finite Geometry for some background.

See in particular The Galois Tesseract.

For the relationship of the 1978 abstract to Kummer
geometry, see Rosenhain and Göpel Tetrads in PG(3,2).

Older Posts »

Powered by WordPress