Log24

Saturday, September 17, 2011

Objectivity

Filed under: Uncategorized — m759 @ 12:00 PM

The previous two posts, Baggage and The Uploading, suggest
a review of Wroclaw's native son Ernst Cassirer.

Wednesday, August 10, 2011

Objectivity

Filed under: Uncategorized — m759 @ 12:25 PM

From math16.com

Quotations on Realism
and the Problem of Universals:

"It is said that the students of medieval Paris came to blows in the streets over the question of universals. The stakes are high, for at issue is our whole conception of our ability to describe the world truly or falsely, and the objectivity of any opinions we frame to ourselves. It is arguable that this is always the deepest, most profound problem of philosophy. It structures Plato's (realist) reaction to the sophists (nominalists). What is often called 'postmodernism' is really just nominalism, colourfully presented as the doctrine that there is nothing except texts. It is the variety of nominalism represented in many modern humanities, paralysing appeals to reason and truth."
— Simon Blackburn, Think, Oxford University Press, 1999, page 268

"You will all know that in the Middle Ages there were supposed to be various classes of angels…. these hierarchized celsitudes are but the last traces in a less philosophical age of the ideas which Plato taught his disciples existed in the spiritual world."
— Charles Williams, page 31, Chapter Two, "The Eidola and the Angeli," in The Place of the Lion (1933), reprinted in 1991 by Eerdmans Publishing

For Williams's discussion of Divine Universals (i.e., angels), see Chapter Eight of The Place of the Lion.

"People have always longed for truths about the world — not logical truths, for all their utility; or even probable truths, without which daily life would be impossible; but informative, certain truths, the only 'truths' strictly worthy of the name. Such truths I will call 'diamonds'; they are highly desirable but hard to find….The happy metaphor is Morris Kline's in Mathematics in Western Culture (Oxford, 1953), p. 430."
— Richard J. Trudeau, The Non-Euclidean Revolution, Birkhauser Boston, 1987, pages 114 and 117

"A new epistemology is emerging to replace the Diamond Theory of truth. I will call it the 'Story Theory' of truth: There are no diamonds. People make up stories about what they experience. Stories that catch on are called 'true.' The Story Theory of truth is itself a story that is catching on. It is being told and retold, with increasing frequency, by thinkers of many stripes…. My own viewpoint is the Story Theory…. I concluded long ago that each enterprise contains only stories (which the scientists call 'models of reality'). I had started by hunting diamonds; I did find dazzlingly beautiful jewels, but always of human manufacture."
— Richard J. Trudeau, The Non-Euclidean Revolution, Birkhauser Boston, 1987, pages 256 and 259

Trudeau's confusion seems to stem from the nominalism of W. V. Quine, which in turn stems from Quine's appalling ignorance of the nature of geometry. Quine thinks that the geometry of Euclid dealt with "an emphatically empirical subject matter" — "surfaces, curves, and points in real space." Quine says that Euclidean geometry lost "its old status of mathematics with a subject matter" when Einstein established that space itself, as defined by the paths of light, is non-Euclidean. Having totally misunderstood the nature of the subject, Quine concludes that after Einstein, geometry has become "uninterpreted mathematics," which is "devoid not only of empirical content but of all question of truth and falsity." (From Stimulus to Science, Harvard University Press, 1995, page 55)
— S. H. Cullinane, December 12, 2000

The correct statement of the relation between geometry and the physical universe is as follows:

"The contrast between pure and applied mathematics stands out most clearly, perhaps, in geometry. There is the science of pure geometry, in which there are many geometries: projective geometry, Euclidean geometry, non-Euclidean geometry, and so forth. Each of these geometries is a model, a pattern of ideas, and is to be judged by the interest and beauty of its particular pattern. It is a map or picture, the joint product of many hands, a partial and imperfect copy (yet exact so far as it extends) of a section of mathematical reality. But the point which is important to us now is this, that there is one thing at any rate of which pure geometries are not pictures, and that is the spatio-temporal reality of the physical world. It is obvious, surely, that they cannot be, since earthquakes and eclipses are not mathematical concepts."
— G. H. Hardy, section 23, A Mathematician's Apology, Cambridge University Press, 1940

The story of the diamond mine continues
(see Coordinated Steps and Organizing the Mine Workers)— 

From The Search for Invariants (June 20, 2011):

The conclusion of Maja Lovrenov's 
"The Role of Invariance in Cassirer’s Interpretation of the Theory of Relativity"—

"… physical theories prove to be theories of invariants
with regard to certain groups of transformations and
it is exactly the invariance that secures the objectivity
of a physical theory."

— SYNTHESIS PHILOSOPHICA 42 (2/2006), pp. 233–241

http://www.log24.com/log/pix11B/110810-MajaLovrenovBio.jpg

Related material from Sunday's New York Times  travel section—

"Exhibit A is certainly Ljubljana…."

Thursday, December 27, 2012

Object Lesson

Filed under: Uncategorized — Tags: — m759 @ 3:17 AM

Yesterday's post on the current Museum of Modern Art exhibition
"Inventing Abstraction: 1910-1925" suggests a renewed look at
abstraction and a fundamental building block: the cube.

From a recent Harvard University Press philosophical treatise on symmetry—

The treatise corrects Nozick's error of not crediting Weyl's 1952 remarks
on objectivity and symmetry, but repeats Weyl's error of not crediting
Cassirer's extensive 1910 (and later) remarks on this subject.

For greater depth see Cassirer's 1910 passage on Vorstellung :

IMAGE- Ernst Cassirer on 'representation' or 'Vorstellung' in 'Substance and Function' as 'the riddle of knowledge'

This of course echoes Schopenhauer, as do discussions of "Will and Idea" in this journal.

For the relationship of all this to MoMA and abstraction, see Cube Space and Inside the White Cube.

"The sacramental nature of the space becomes clear…." — Brian O'Doherty

Sunday, December 23, 2012

In a Nutshell…

Filed under: Uncategorized — m759 @ 1:00 AM

The Kernel of the Concept of the Object

according to the New York Lottery yesterday—

From 4/27

From 11/24

IMAGE- Agent Smith from 'The Matrix,' 1999

A page numbered 176

A page numbered 187

Wednesday, September 21, 2011

Symmetric Generation

Filed under: Uncategorized — Tags: , , — m759 @ 2:00 PM

Suggested by yesterday's Relativity Problem Revisited and by Cassirer on Objectivity

From Symmetric Generation of Groups , by R.T. Curtis (Cambridge U. Press, 2007)—

"… we are saying much more than that G M 24 is generated by
some set of seven involutions, which would be a very weak
requirement. We are asserting that M 24 is generated by a set
of seven involutions which possesses all the symmetries of L3(2)
acting on the points of the 7-point projective plane…."
Symmetric Generation , p. 41

"It turns out that this approach is particularly revealing and that
many simple groups, both sporadic and classical, have surprisingly
simple definitions of this type."
Symmetric Generation , p. 42

See also (click to enlarge)—

http://www.log24.com/log/pix11B/110921-CassirerOnObjectivity-400w.jpg

Cassirer's remarks connect the concept of objectivity  with that of object .

The above quotations perhaps indicate how the Mathieu group M 24 may be viewed as an object.

"This is the moment which I call epiphany. First we recognise that the object is one  integral thing, then we recognise that it is an organised composite structure, a thing  in fact: finally, when the relation of the parts is exquisite, when the parts are adjusted to the special point, we recognise that it is that  thing which it is. Its soul, its whatness, leaps to us from the vestment of its appearance. The soul of the commonest object, the structure of which is so adjusted, seems to us radiant. The object achieves its epiphany."

— James Joyce, Stephen Hero

For a simpler object "which possesses all the symmetries of L3(2) acting on the points of the 7-point projective plane…." see The Eightfold Cube.

For symmetric generation of L3(2) on that cube, see A Simple Reflection Group of Order 168.

Tuesday, June 21, 2011

Piracy Project

Filed under: Uncategorized — Tags: , — m759 @ 2:02 AM

Recent piracy of my work as part of a London art project suggests the following.

http://www.log24.com/log/pix11A/110620-PirateWithParrotSm.jpg

           From http://www.trussel.com/rls/rlsgb1.htm

The 2011 Long John Silver Award for academic piracy
goes to ….

Hermann Weyl, for the remark on objectivity and invariance
in his classic work Symmetry  that skillfully pirated
the much earlier work of philosopher Ernst Cassirer.

And the 2011 Parrot Award for adept academic idea-lifting
goes to …

Richard Evan Schwartz of Brown University, for his
use, without citation, of Cullinane’s work illustrating
Weyl’s “relativity problem” in a finite-geometry context.

For further details, click on the above names.

Monday, June 20, 2011

The Search for Invariants

Filed under: Uncategorized — m759 @ 9:29 AM

The title of a recent contribution to a London art-related "Piracy Project" begins with the phrase "The Search for Invariants."

A search for that phrase  elsewhere yields a notable 1944* paper by Ernst Cassirer, "The Concept of Group and the Theory of Perception."

Page 20: "It is a process of objectification, the characteristic nature
and tendency of which finds expression in the formation of invariants."

Cassirer's concepts seem related to Weyl's famous remark that

Objectivity means invariance with respect to the group of automorphisms.”
Symmetry  (Princeton University Press, 1952, page 132)

See also this journal on June 23, 2010— "Group Theory and Philosophy"— as well as some Math Forum remarks on Cassirer and Weyl.

Update of 6 to 7:50 PM June 20, 2011—

Weyl's 1952 remark seems to echo remarks in 1910 and 1921 by Cassirer.
See Cassirer in 1910 and 1921 on Objectivity.

Another source on Cassirer, invariance, and objectivity

The conclusion of Maja Lovrenov's 
"The Role of Invariance in Cassirer’s Interpretation of the Theory of Relativity"—

"… physical theories prove to be theories of invariants
with regard to certain groups of transformations and
it is exactly the invariance that secures the objectivity
of a physical theory."

— SYNTHESIS PHILOSOPHICA 42 (2/2006), pp. 233–241

A search in Weyl's Symmetry  for any reference to Ernst Cassirer yields no results.

* Published in French in 1938.

Powered by WordPress