Friday, February 17, 2017

Heptads and Heptapods

Filed under: Uncategorized — m759 @ 12:00 AM

In the recent science fiction film "Arrival," Amy Adams portrays
a linguist, Louise Banks, who must learn to translate the language of
aliens ("Heptapods") who have just arrived in their spaceships.

The point of this tale seems to have something to do with Banks
learning, along with the aliens' language, their skill of seeing into
the future.

Louise Banks wannabes might enjoy the works of one
Metod Saniga, who thinks that finite geometry might have
something to do with perceptions of time.

See Metod Saniga, “Algebraic Geometry: A Tool for Resolving
the Enigma of Time?”, in R. Buccheri, V. Di Gesù and M. Saniga (eds.), 
Studies on the Structure of Time: From Physics to Psycho(patho)logy,
Kluwer Academic / Plenum Publishers, New York, 2000, pp. 137–166.
Available online at www.ta3.sk/~msaniga/pub/ftp/mathpsych.pdf .

Although I share an interest in finite geometry with Saniga —
see, for instance, his remarks on Conwell heptads in the previous post
and my own remarks in yesterday's post "Schoolgirls and Heptads" —
I do not endorse his temporal speculations.

Thursday, February 16, 2017

Schoolgirls and Heptads

Filed under: Uncategorized — m759 @ 11:32 AM

A Feb. 12 note in the "talk" section of the Wikipedia article
"Kirkman's schoolgirl problem" —

The illustration above was replaced by a new section in the article,
titled "Galois geometry."

The new section improves the article by giving it greater depth.  
For related material, see Conwell Heptads in this journal
(or, more generally, Conwell) and a 1985 note citing Conwell's work.

Wednesday, December 7, 2016

Spreads and Conwell’s Heptads

Filed under: Uncategorized — m759 @ 7:11 PM

For a concise historical summary of the interplay between
the geometry of an 8-set and that of a 16-set that is
involved in the the Miracle Octad Generator approach
to the large Mathieu group M24, see Section 2 of 

Alan R. Prince
A near projective plane of order 6 (pp. 97-105)
Innovations in Incidence Geometry
Volume 13 (Spring/Fall 2013).

This interplay, notably discussed by Conwell and
by Edge, involves spreads and Conwell's heptads .

Update, morning of the following day (7:07 ET) — related material:

See also "56 spreads" in this  journal.

Tuesday, June 7, 2016

Art and Space…

Filed under: Uncategorized — m759 @ 6:00 AM

Continues, in memory of chess grandmaster Viktor Korchnoi,
who reportedly died at 85 yesterday in Switzerland —

IMAGE- Spielfeld (1982-83), by Wolf Barth

The coloring of the 4×4 "base" in the above image
suggests St. Bridget's cross.

From this journal on St. Bridget's Day this year —

"Possible title: 

A new graphic approach 
to an old geometric approach
to a new combinatorial approach
to an old algebraic approach
to M24

The narrative leap from image to date may be regarded as
an example of "knight's move" thinking.

Friday, April 8, 2016

Ogdoads by Curtis

Filed under: Uncategorized — Tags: , — m759 @ 12:25 PM

As was previously noted here, the construction of the Miracle Octad Generator
of R. T. Curtis in 1974 involved his "folding" the 1×8 octads constructed in 1967
by Turyn into 2×4 form.

This resulted in a way of picturing a well-known correspondence (Conwell, 1910)
between partitions of an 8-set and lines of the projective 3-space PG(3,2).

For some background related to the "ogdoads" of the previous post, see
A Seventh Seal (Sept. 15, 2014).

Monday, February 1, 2016

Historical Note

Filed under: Uncategorized — Tags: — m759 @ 6:29 AM

Possible title

A new graphic approach 
to an old geometric approach
to a new combinatorial approach
to an old algebraic approach
to M24

Friday, March 21, 2014

Three Constructions of the Miracle Octad Generator

Filed under: Uncategorized — Tags: , , — m759 @ 12:24 PM

IMAGE- Two constructions, by Turyn/Curtis, and by Conway, of the Miracle Octad Generator

See also a Log24 post on this subject from Dec. 14, 2013,
especially (scroll down) the update of March 9, 2014.

Related material on the Turyn-Curtis construction
from the University of Cambridge —

— Slide by “Dr. Parker” — Apparently Richard A. Parker —
Lecture 4, “Discovering M24,” in slides for lectures 1-8 from lectures
at Cambridge in 2010-2011 on “Sporadic and Related Groups.”
See also the Parker lectures of 2012-2013 on the same topic.

A third construction of Curtis’s 35  4×6  1976 MOG arrays would use
Cullinane’s analysis of the 4×4 subarrays’ affine and projective structure,
and point out the fact that Conwell’s 1910 correspondence of the 35
4+4-partitions of an 8-set with the 35 lines of the projective 3-space
over the 2-element field, PG(3, 2), is essentially the same correspondence
as that constituting Curtis’s 1976 MOG.

See The Diamond Theorem,  Finite RelativityGalois Space,
Generating the Octad Generator, and The Klein Correspondence.

Update of March 22-March 23 —

Adding together as (0,1)-matrices over GF(2) the black parts (black
squares as 1’s, all other squares as 0’s) of the 35  4×6 arrays of the 1976
Curtis MOG would then reveal*  the symmetric role played in octads
by what Curtis called the heavy brick , and so reveal also the action of
S3 on the three Curtis bricks that leaves invariant the set of all 759
octads of the S(5, 8, 24) constructed from the 35  MOG arrays.  For more
details of this “by-hand” construction, see Geometry of the 4×4 Square.
For the mathematical properties of the S(5, 8, 24), it is convenient to
have a separate construction,  not  by hand (such as Turyn’s), of the
extended binary Golay code. See the Brouwer preprint quoted above.

* “Then a miracle occurs,” as in the classic 1977 Sidney Harris cartoon.

Illustration of array addition from March 23 —

IMAGE- Discovery of the S_3 action on bricks in the Conwell-Cullinane 'by-hand' approach to octad-building

Saturday, March 8, 2014

Women’s History Month

Filed under: Uncategorized — m759 @ 8:00 PM

For the Princeton Class of 1905 —

Joyce Carol Oates Meets Emily Dickinson.

Oates —

“It is an afternoon in autumn, near dusk.
The western sky is a spider’s web of translucent gold.
I am being brought by carriage—two horses—
muted thunder of their hooves—
along narrow country roads between hilly fields
touched with the sun’s slanted rays,
to the village of Princeton, New Jersey.
The urgent pace of the horses has a dreamlike air,
like the rocking motion of the carriage;
and whoever is driving the horses
his face I cannot see, only his back—
stiff, straight, in a tight-fitting dark coat.”

Dickinson —

“Because I could not stop for Death—
He kindly stopped for me—
The Carriage held but just Ourselves—
And Immortality.”

Conwell Heptads in Eastern Europe

Filed under: Uncategorized — Tags: — m759 @ 11:07 AM

“Charting the Real Four-Qubit Pauli Group
via Ovoids of a Hyperbolic Quadric of PG(7,2),”
by Metod Saniga, Péter Lévay and Petr Pracna,
arXiv:1202.2973v2 [math-ph] 26 Jun 2012 —

P. 4— “It was found that +(5,2) (the Klein quadric)
has, up to isomorphism, a unique  one — also known,
after its discoverer, as a Conwell heptad  [18].
The set of 28 points lying off +(5,2) comprises
eight such heptads, any two having exactly one
point in common.”

P. 11— “This split reminds us of a similar split of
63 points of PG(5,2) into 35/28 points lying on/off
a Klein quadric +(5,2).”

[18] G. M. Conwell, Ann. Math. 11 (1910) 60–76

A similar split occurs in yesterday’s Kummer Varieties post.
See the 63 = 28 + 35 vectors of R8 discussed there.

For more about Conwell heptads, see The Klein Correspondence,
Penrose Space-Time, and a Finite Model

For my own remarks on the date of the above arXiv paper
by Saniga et. al., click on the image below —

Walter Gropius

Tuesday, July 9, 2013

Vril Chick

Filed under: Uncategorized — m759 @ 4:30 AM

Profile picture of "Jo Lyxe" (Josefine Lyche) at Vimeo

Profile picture for "Jo Lyxe" (Josefine Lyche) at Vimeo

Compare to an image of Vril muse Maria Orsitsch.

From the catalog of a current art exhibition
(25 May – 31 August, 2013) in Norway,

Josefine Lyche
Born in 1973 in Bergen, Norway.
Lives and works in Oslo and Berlin.

Keywords (to help place my artwork in the
proper context): Aliens, affine geometry, affine
planes, affine spaces, automorphisms, binary
codes, block designs, classical groups, codes,
coding theory, collineations, combinatorial,
combinatorics, conjugacy classes, the Conwell
correspondence, correlations, Cullinane,
R. T. Curtis, design theory, the diamond theorem,
diamond theory, duads, duality, error correcting
codes, esoteric, exceptional groups,
extraterrestrials, finite fields, finite geometry, finite
groups, finite rings, Galois fields, generalized
quadrangles, generators, geometry, GF(2),
GF(4), the (24,12) Golay code, group actions,
group theory, Hadamard matrices, hypercube,
hyperplanes, hyperspace, incidence structures,
invariance, Karnaugh maps, Kirkman’s schoolgirls
problem, Latin squares, Leech lattice, linear
groups, linear spaces, linear transformations,
Magick, Mathieu groups, matrix theory, Meno,
Miracle Octad Generator, MOG, multiply transitive
groups, occultism, octahedron, the octahedral
group, Orsic, orthogonal arrays, outer automorphisms,
parallelisms, partial geometries,
permutation groups, PG(3,2), Plato, Platonic
solids, polarities, Polya-Burnside theorem, projective
geometry, projective planes, projective
spaces, projectivities, Pythagoras, reincarnation,
Reed-Muller codes, the relativity problem,
reverse engineering, sacred geometry, Singer
cycle, skew lines, Socrates, sporadic simple
groups, Steiner systems, Sylvester, symmetric,
symmetry, symplectic, synthemes, synthematic,
Theosophical Society tesseract, Tessla, transvections,
Venn diagrams, Vril society, Walsh
functions, Witt designs.

(See also the original catalog page.)

Clearly most of this (the non-highlighted parts) was taken
from my webpage Diamond Theory. I suppose I should be
flattered, but I am not thrilled to be associated with the
(apparently fictional) Vril Society.

For some background, see (for instance) 
Conspiracy Theories and Secret Societies for Dummies .

Wednesday, May 1, 2013

The Crosswicks Curse

Filed under: Uncategorized — m759 @ 9:00 PM


"There is  such a thing as a tesseract." —A novel from Crosswicks

Related material from a 1905 graduate of Princeton,
"The 3-Space PG(3,2) and Its Group," is now available
at Internet Archive (1 download thus far).

The 3-space paper is relevant because of the
connection of the group it describes to the
"super, overarching" group of the tesseract.

Saturday, March 16, 2013

The Crosswicks Curse

Filed under: Uncategorized — Tags: — m759 @ 4:00 PM


From the prologue to the new Joyce Carol Oates
novel Accursed

"This journey I undertake with such anticipation
is not one of geographical space but one of Time—
for it is the year 1905 that is my destination.

1905!—the very year of the Curse."

Today's previous post supplied a fanciful link
between the Crosswicks Curse of Oates and
the Crosswicks tesseract  of Madeleine L'Engle.

The Crosswicks Curse according to L'Engle
in her classic 1962 novel A Wrinkle in Time —

"There is  such a thing as a tesseract."

A tesseract is a 4-dimensional hypercube that
(as pointed out by Coxeter in 1950) may also 
be viewed as a 4×4 array (with opposite edges

Meanwhile, back in 1905

For more details, see how the Rosenhain and Göpel tetrads occur naturally
in the diamond theorem model of the 35 lines of the 15-point projective
Galois space PG(3,2).

See also Conwell in this journal and George Macfeely Conwell in the
honors list of the Princeton Class of 1905.

Monday, November 19, 2012

Poetry and Truth

Filed under: Uncategorized — Tags: , , , , — m759 @ 7:59 PM

From today's noon post

"In all his poems with all their enchantments
for the poet himself, there is the final enchantment
that they are true. The significance of the poetic act
then is that it is evidence. It is instance and illustration.
It is an illumination of a surface,
the movement of a self in the rock.
Above all it is a new engagement with life.
It is that miracle to which the true faith of the poet
attaches itself."

— Wallace Stevens at Bard College, March 30, 1951

Stevens also said at Bard that

"When Joan of Arc said: 

Have no fear: what I do, I do by command.
My brothers of Paradise tell me what I have to do.

these words were the words of an hallucination.
No matter what her brothers of Paradise drove her to do,
what she did was never a poetic act of faith in reality
because it could not be."

There are those who would dispute this.

Some related material:

"Ageometretos me eisito."—
"Let no one ignorant of geometry enter."—
Said to be a saying of Plato, part of the
seal of the American Mathematical Society—

A poetic approach to geometry—

"A surface" and "the rock," from All Saints' Day, 2012

Spaces as Hypercubes

— and from 1981—


Some mathematical background for poets in Purgatory—

"… the Klein correspondence underlies Conwell's discussion 
of eight heptads. These play an important role in another
correspondence, illustrated in the Miracle Octad Generator
of R. T. Curtis, that may be used to picture actions
of the large Mathieu group M24."

Monday, September 12, 2011

Key Paper Now Online

Filed under: Uncategorized — m759 @ 11:07 PM

The 3-Space PG(3,2) and Its Group

by George M. Conwell, Annals of Mathematics ,
Second Series, Vol. 11, No. 2 (Jan., 1910), pp. 60-76

Article Stable URL: http://www.jstor.org/stable/1967582

At least for now, this paper may be downloaded without
signing in or making a payment. Click the "View PDF" link.

Update of Sept. 13— From Library Journal  on Sept. 7—

The JSTOR journal archive announced today that it is making nearly 500,000 public domain journal articles from more than 220 journals—or about six percent of JSTOR's total content—freely available for use by "anyone, without registration and regardless of institutional affiliation."

The material, entitled Early Journal Content, will be rolled out in batches starting today over the course of one week. It includes content published in the United States before 1923 and international content published before 1870, which ensures that all the content is firmly in the public domain. JSTOR, in an announcement, said that the move was "a first step in a larger effort to provide more access options" to JSTOR content for independent scholars and others unaffiliated with universities.

Friday, October 2, 2009

Friday October 2, 2009

Filed under: Uncategorized — m759 @ 6:00 AM
Edge on Heptads

Part I: Dye on Edge

….we obtain various orbits of partitions of quadrics over GF(2a) by their maximal totally singular subspaces; the corresponding stabilizers in the relevant orthogonal groups are investigated. It is explained how some of these partitions naturally generalize Conwell’s heptagons for the Klein quadric in PG(5,2).”

In 1910 Conwell… produced his heptagons in PG(5,2) associated with the Klein quadric K whose points represent the lines of PG(3,2)…. Edge… constructed the 8 heptads of complexes in PG(3,2) directly. Both he and Conwell used their 8 objects to establish geometrically the isomorphisms SL(4,2)=A8 and O6(2)=S8 where O6(2) is the group of K….”

— “Partitions and Their Stabilizers for Line Complexes and Quadrics,” by R.H. Dye, Annali di Matematica Pura ed Applicata, Volume 114, Number 1, December 1977, pp. 173-194

Part II: Edge on Heptads

The Geometry of the Linear Fractional Group LF(4,2),” by W.L. Edge, Proc. London Math Soc., Volume s3-4, No. 1, 1954, pp. 317-342. See the historical remarks on the first page.

Note added by Edge in proof:
“Since this paper was finished I have found one by G. M. Conwell: Annals of Mathematics (2) 11 (1910), 60-76….”

Some context:

The Klein Correspondence,
Penrose Space-Time,
and a Finite Model

Saturday, April 4, 2009

Saturday April 4, 2009

Filed under: Uncategorized — Tags: — m759 @ 8:00 AM
Annual Tribute to
The Eight

Katherine Neville's 'The Eight,' edition with knight on cover, on her April 4 birthday

Other knight figures:

Knight figures in finite geometry (Singer 7-cycles in the 3-space over GF(2) by Cullinane, 1985, and Curtis, 1987)

The knight logo at the SpringerLink site

Click on the SpringerLink
knight for a free copy
(pdf, 1.2 mb) of
the following paper
dealing with the geometry
underlying the R.T. Curtis
knight figures above:

Springer description of 1970 paper on Mathieu-group geometry by Wilbur Jonsson of McGill U.


Literature and Chess and
Sporadic Group References



Adapted (for HTML) from the opening paragraphs of the above paper, W. Jonsson's 1970 "On the Mathieu Groups M22, M23, M24…"–

"[A]… uniqueness proof is offered here based upon a detailed knowledge of the geometric aspects of the elementary abelian group of order 16 together with a knowledge of the geometries associated with certain subgroups of its automorphism group. This construction was motivated by a question posed by D.R. Hughes and by the discussion Edge [5] (see also Conwell [4]) gives of certain isomorphisms between classical groups, namely


where A8 is the alternating group on eight symbols, S6 the symmetric group on six symbols, Sp(4,2) and PSp(4,2) the symplectic and projective symplectic groups in four variables over the field GF(2) of two elements, [and] PGL, PSL and SL are the projective linear, projective special linear and special linear groups (see for example [7], Kapitel II).

The symplectic group PSp(4,2) is the group of collineations of the three dimensional projective space PG(3,2) over GF(2) which commute with a fixed null polarity tau…."


4. Conwell, George M.: The three space PG(3,2) and its group. Ann. of Math. (2) 11, 60-76 (1910).

5. Edge, W.L.: The geometry of the linear fractional group LF(4,2). Proc. London Math. Soc. (3) 4, 317-342 (1954).

7. Huppert, B.: Endliche Gruppen I. Berlin-Heidelberg-New York: Springer 1967.

Sunday, March 1, 2009

Sunday March 1, 2009

Filed under: Uncategorized — Tags: , — m759 @ 11:00 AM

Solomon's Cube

"There is a book… called A Fellow of Trinity, one of series dealing with what is supposed to be Cambridge college life…. There are two heroes, a primary hero called Flowers, who is almost wholly good, and a secondary hero, a much weaker vessel, called Brown. Flowers and Brown find many dangers in university life, but the worst is a gambling saloon in Chesterton run by the Misses Bellenden, two fascinating but extremely wicked young ladies. Flowers survives all these troubles, is Second Wrangler and Senior Classic, and succeeds automatically to a Fellowship (as I suppose he would have done then). Brown succumbs, ruins his parents, takes to drink, is saved from delirium tremens during a thunderstorm only by the prayers of the Junior Dean, has much difficulty in obtaining even an Ordinary Degree, and ultimately becomes a missionary. The friendship is not shattered by these unhappy events, and Flowers's thoughts stray to Brown, with affectionate pity, as he drinks port and eats walnuts for the first time in Senior Combination Room."

— G. H. Hardy, A Mathematician's Apology

"The Solomon Key is the working title of an unreleased novel in progress by American author Dan Brown. The Solomon Key will be the third book involving the character of the Harvard professor Robert Langdon, of which the first two were Angels & Demons (2000) and The Da Vinci Code (2003)." —Wikipedia

"One has O+(6) ≅ S8, the symmetric group of order 8! …."

 — "Siegel Modular Forms and Finite Symplectic Groups," by Francesco Dalla Piazza and Bert van Geemen, May 5, 2008, preprint.

"The complete projective group of collineations and dualities of the [projective] 3-space is shown to be of order [in modern notation] 8! …. To every transformation of the 3-space there corresponds a transformation of the [projective] 5-space. In the 5-space, there are determined 8 sets of 7 points each, 'heptads' …."

— George M. Conwell, "The 3-space PG(3, 2) and Its Group," The Annals of Mathematics, Second Series, Vol. 11, No. 2 (Jan., 1910), pp. 60-76

"It must be remarked that these 8 heptads are the key to an elegant proof…."

— Philippe Cara, "RWPRI Geometries for the Alternating Group A8," in Finite Geometries: Proceedings of the Fourth Isle of Thorns Conference (July 16-21, 2000), Kluwer Academic Publishers, 2001, ed. Aart Blokhuis, James W. P. Hirschfeld, Dieter Jungnickel, and Joseph A. Thas, pp. 61-97

Friday, February 27, 2009

Friday February 27, 2009

Filed under: Uncategorized — Tags: — m759 @ 7:35 PM
Time and Chance

Today's Pennsylvania lottery numbers suggest the following meditations…

Midday:  Lot 497, Bloomsbury Auctions May 15, 2008– Raum und Zeit (Space and Time), by Minkowski, 1909. Background: Minkowski Space and "100 Years of Space-Time."*

Evening: 5/07, 2008, in this journal– "Forms of the Rock."

Related material:

A current competition at Harvard Graduate School of Design, "The Space of Representation," has a deadline of 8 PM tonight, February 27, 2009.

The announcement of the competition quotes the Marxist Henri Lefebvre on "the social production of space."

A related quotation by Lefebvre (cf. 2/22 2009):

"… an epoch-making event so generally ignored that we have to be reminded of it at every moment. The fact is that around 1910 a certain space was shattered… the space… of classical perspective and geometry…."

— Page 25 of The Production of Space (Blackwell Publishing, 1991)

This suggests, for those who prefer Harvard's past glories to its current state, a different Raum from the Zeit 1910.

In January 1910 Annals of Mathematics, then edited at Harvard, published George M. Conwell's "The 3-space PG(3, 2) and Its Group." This paper, while perhaps neither epoch-making nor shattering, has a certain beauty. For some background, see this journal on February 24, 2009.†

    * Ending on Stephen King's birthday, 2008
     † Mardi Gras

Tuesday, February 24, 2009

Tuesday February 24, 2009

Filed under: Uncategorized — Tags: — m759 @ 1:00 PM
Hollywood Nihilism
Pantheistic Solipsism

Tina Fey to Steve Martin
at the Oscars:
"Oh, Steve, no one wants
 to hear about our religion
… that we made up."

Tina Fey and Steve Martin at the 2009 Oscars

From Wallace Stevens: A World of Transforming Shapes, by Alan D. Perlis, Bucknell University Press, 1976, p. 117:

… in 'The Pediment of Appearance,' a slight narrative poem in Transport to Summer

 A group of young men enter some woods 'Hunting for the great ornament, The pediment of appearance.' Though moving through the natural world, the young men seek the artificial, or pure form, believing that in discovering this pediment, this distillation of the real, they will also discover the 'savage transparence,' the rude source of human life. In Stevens's world, such a search is futile, since it is only through observing nature that one reaches beyond it to pure form. As if to demonstrate the degree to which the young men's search is misaligned, Stevens says of them that 'they go crying/The world is myself, life is myself,' believing that what surrounds them is immaterial. Such a proclamation is a cardinal violation of Stevens's principles of the imagination.

Superficially the young men's philosophy seems to resemble what Wikipedia calls "pantheistic solipsism"– noting, however, that "This article has multiple issues."

As, indeed, does pantheistic solipsism– a philosophy (properly called "eschatological pantheistic multiple-ego solipsism") devised, with tongue in cheek, by science-fiction writer Robert A. Heinlein.

Despite their preoccupation with solipsism, Heinlein and Stevens point, each in his own poetic way, to a highly non-solipsistic topic from pure mathematics that is, unlike the religion of Martin and Fey, not made up– namely, the properties of space.


"Sharpie, we have condensed six dimensions into four, then we either work by analogy into six, or we have to use math that apparently nobody but Jake and my cousin Ed understands. Unless you can think of some way to project six dimensions into three– you seem to be smart at such projections."
    I closed my eyes and thought hard. "Zebbie, I don't think it can be done. Maybe Escher could have done it."


A discussion of Stevens's late poem "The Rock" (1954) in Wallace Stevens: A World of Transforming Shapes, by Alan D. Perlis, Bucknell University Press, 1976, p. 120:

For Stevens, the poem "makes meanings of the rock." In the mind, "its barrenness becomes a thousand things/And so exists no more." In fact, in a peculiar irony that only a poet with Stevens's particular notion of the imagination's function could develop, the rock becomes the mind itself, shattered into such diamond-faceted brilliance that it encompasses all possibilities for human thought:

The rock is the gray particular of man's life,
The stone from which he rises, up—and—ho,
The step to the bleaker depths of his descents ...

The rock is the stern particular of the air,
The mirror of the planets, one by one,
But through man's eye, their silent rhapsodist,

Turquoise the rock, at odious evening bright
With redness that sticks fast to evil dreams;
The difficult rightness of half-risen day.

The rock is the habitation of the whole,
Its strength and measure, that which is near,
     point A
In a perspective that begins again

At B: the origin of the mango's rind.

                    (Collected Poems, 528)

Stevens's rock is associated with empty space, a concept that suggests "nothingness" to one literary critic:

B. J. Leggett, "Stevens's Late Poetry" in The Cambridge Companion to Wallace Stevens— On the poem "The Rock":

"… the barren rock of the title is Stevens's symbol for the nothingness that underlies all existence, 'That in which space itself is contained'….  Its subject is its speaker's sense of nothingness and his need to be cured of it."

This interpretation might appeal to Joan Didion, who, as author of the classic novel Play It As It Lays, is perhaps the world's leading expert on Hollywood nihilism.

More positively…

Space is, of course, also a topic
in pure mathematics…
For instance, the 6-dimensional
affine space
(or the corresponding
5-dimensional projective space)

The 4x4x4 cube

over the two-element Galois field
can be viewed as an illustration of
Stevens's metaphor in "The Rock."

Heinlein should perhaps have had in mind the Klein correspondence when he discussed "some way to project six dimensions into three." While such a projection is of course trivial for anyone who has taken an undergraduate course in linear algebra, the following remarks by Philippe Cara present a much more meaningful mapping, using the Klein correspondence, of structures in six (affine) dimensions to structures in three.


Philippe Cara on the Klein correspondence
Here the 6-dimensional affine
space contains the 63 points
of PG(5, 2), plus the origin, and
the 3-dimensional affine
space contains as its 8 points
Conwell's eight "heptads," as in
Generating the Octad Generator.

Monday, May 28, 2007

Monday May 28, 2007

Filed under: Uncategorized — Tags: — m759 @ 5:00 PM
and a Finite Model

Notes by Steven H. Cullinane
May 28, 2007

Part I: A Model of Space-Time

The following paper includes a figure illustrating Penrose's model of  "complexified, compactified Minkowski space-time as the Klein quadric in complex projective 5-space."
The image “http://www.log24.com/log/pix07/070528-Twistor.jpg” cannot be displayed, because it contains errors.
Click on picture to enlarge.

For some background on the Klein quadric and space-time, see Roger Penrose, "On the Origins of Twistor Theory," from Gravitation and Geometry: A Volume in Honor of Ivor Robinson, Bibliopolis, 1987.

Part II: A Corresponding Finite Model

The Klein quadric also occurs in a finite model of projective 5-space.  See a 1910 paper:

G. M. Conwell, The 3-space PG(3,2) and its group, Ann. of Math. 11, 60-76.

Conwell discusses the quadric, and the related Klein correspondence, in detail.  This is noted in a more recent paper by Philippe Cara:

The image “http://www.log24.com/log/pix07/070528-Quadric.jpg” cannot be displayed, because it contains errors.

As Cara goes on to explain, the Klein correspondence underlies Conwell's discussion of eight heptads.  These play an important role in another correspondence, illustrated in the Miracle Octad Generator of R. T. Curtis, that may be used to picture actions of the large Mathieu group M24.

Related material:


The projective space PG(5,2), home of the Klein quadric in the finite model, may be viewed as the set of 64 points of the affine space AG(6,2), minus the origin.

The 64 points of this affine space may in turn be viewed as the 64 hexagrams of the Classic of Transformation, China's I Ching.

There is a natural correspondence between the 64 hexagrams and the 64 subcubes of a 4x4x4 cube.  This correspondence leads to a natural way to generate the affine group AGL(6,2).  This may in turn be viewed as a group of over a trillion natural transformations of the 64 hexagrams.

Geometry of the I Ching.
"Once Knecht confessed to his teacher that he wished to learn enough to be able to incorporate the system of the I Ching into the Glass Bead Game.  Elder Brother laughed.  'Go ahead and try,' he exclaimed.  'You'll see how it turns out.  Anyone can create a pretty little bamboo garden in the world.  But I doubt that the gardener would succeed in incorporating the world in his bamboo grove.'"
— Hermann Hesse, The Glass Bead Game,
  translated by Richard and Clara Winston

Tuesday, October 3, 2006

Tuesday October 3, 2006

Filed under: Uncategorized — m759 @ 9:26 AM


“I don’t think the ‘diamond theorem’ is anything serious, so I started with blitzing that.”

Charles Matthews at Wikipedia, Oct. 2, 2006

“The ‘seriousness’ of a mathematical theorem lies, not in its practical consequences, which are usually negligible, but in the significance of the mathematical ideas which it connects. We may say, roughly, that a mathematical idea is ‘significant’ if it can be connected, in a natural and illuminating way, with a large complex of other mathematical ideas.”

— G. H. Hardy, A Mathematician’s Apology

Matthews yesterday deleted references to the diamond theorem and related material in the following Wikipedia articles:

Affine group‎
Reflection group‎
Symmetry in mathematics‎
Incidence structure‎
Invariant (mathematics)‎
Finite geometry‎
Group action‎
History of geometry‎

This would appear to be a fairly large complex of mathematical ideas.

See also the following “large complex” cited, following the above words of Hardy, in Diamond Theory:

Affine geometry, affine planes, affine spaces, automorphisms, binary codes, block designs, classical groups, codes, coding theory, collineations, combinatorial, combinatorics, conjugacy classes, the Conwell correspondence, correlations, design theory, duads, duality, error correcting codes, exceptional groups, finite fields, finite geometry, finite groups, finite rings, Galois fields, generalized quadrangles, generators, geometry, GF(2), GF(4), the (24,12) Golay code, group actions, group theory, Hadamard matrices, hypercube, hyperplanes, hyperspace, incidence structures, invariance, Karnaugh maps, Kirkman’s schoolgirls problem, Latin squares, Leech lattice, linear groups, linear spaces, linear transformations, Mathieu groups, matrix theory, Meno, Miracle Octad Generator, MOG, multiply transitive groups, octads, the octahedral group, orthogonal arrays, outer automorphisms, parallelisms, partial geometries, permutation groups, PG(3,2), polarities, Polya-Burnside theorem, projective geometry, projective planes, projective spaces, projectivities, Reed-Muller codes, the relativity problem, Singer cycle, skew lines,  sporadic simple groups, Steiner systems, symmetric, symmetry, symplectic, synthemes, synthematic, tesseract, transvections, Walsh functions, Witt designs.

Friday, April 28, 2006

Friday April 28, 2006

Filed under: Uncategorized — Tags: — m759 @ 12:00 PM


Review the concepts of integritas, consonantia,  and claritas in Aquinas:

"For in respect to beauty three things are essential: first of all, integrity or completeness, since beings deprived of wholeness are on this score ugly; and [secondly] a certain required design, or patterned structure; and finally a certain splendor, inasmuch as things are called beautiful which have a certain 'blaze of being' about them…."

Summa Theologiae Sancti Thomae Aquinatis, I, q. 39, a. 8, as translated by William T. Noon, S.J., in Joyce and Aquinas, Yale University Press, 1957

Review the following three publications cited in a note of April 28, 1985 (21 years ago today):

(1) Cameron, P. J.,
     Parallelisms of Complete Designs,
     Cambridge University Press, 1976.

(2) Conwell, G. M.,
     The 3-space PG(3,2) and its group,
     Ann. of Math. 11 (1910) 60-76.

(3) Curtis, R. T.,
     A new combinatorial approach to M24,
     Math. Proc. Camb. Phil. Soc.
79 (1976) 25-42.

Discuss how the sextet parallelism in (1) illustrates integritas, how the Conwell correspondence in (2) illustrates consonantia, and how the Miracle Octad Generator in (3) illustrates claritas.

Powered by WordPress